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Abstract 
 
The North West Shelf of Australia is a world class gas province with minor oily sweet 
spots. It is a marginal rift with pre-rift Permo-Triassic intracratonic sediments, overlain 
by Jurassic to Cainozoic syn- and post-rift successions. These were deposited in response 
to rifting and seafloor spreading of at least three continental blocks in Oxfordian, 
Tithonian and Valanginian times. Rifting was initiated in the central Argo area in the 
Oxfordian. In Tithonian times, the rifting jumped to the north of Timor (where the 
spreading record has been subsequently subducted), then in the Valanginian it moved to 
the southern Cuvier area. This break-up history produced a complex spatial and temporal 
distribution of rift and post rift deposits, which strongly control the efficiency and liquid 
hydrocarbon potential of the margin’s petroleum systems.  
 
Since exploration drilling commenced in 1953, some 754 exploration wells have been 
drilled (at Dec 2001), discovering estimated reserves of 2.6 billion bbls of oil, 2.6 billion 
bbls of condensate and 152 Tcf of gas within 233 hydrocarbon fields. Most of the 
successful traps comprise sands within rift-related horsts and tilt blocks, or sands within 
overlying drape structures. Almost all (97%) of the margin’s resources are reservoired 
beneath the (dominantly Cretaceous) regional seal. Other more complex traps have been 
rarely successful, in general the margin offers little encouragement for stratigraphic 
entrapment due to the sandy section beneath (and above) the regional seal.  
 
The dominance of gas (84% by boe) is due to the quality, and often the high maturity, of 
the source rocks within all identified hydrocarbon systems. Rare oil-prone source rocks 
are present, but their effectiveness in producing economic oil fields relies on protection 
from gas flushing, and/or biodegradation or the selective loss or separation of the 
dominant gas charge via fault leakage or water washing. Effective oil source rocks are 
found locally within mainly Jurassic pre- and syn-rift deltaic, or syn-rift marine settings, 
within partially restricted depositional settings, whereas sediments deposited in open 
marine environments are typically lean and gas-prone.  
 
The extensive coverage of 3D seismic acquired in the late 1990s over the ‘oily’ portions 
of the margin has not resulted in large exploration successes. This is due to the simple 
effective traps at base regional seal level being beneath the amplitude floor and had been 
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previously identified with 2D data. Small traps were identified by 3D in these areas, and 
these discoveries will be developed as infrastructure matures, and economic thresholds 
decrease. 
 
Some 119 Tcf of gas reserves remain undeveloped, together with an estimated 1400 
mmbbls of potential condensate reserves. The future of the North West Shelf 
hydrocarbon province largely lies in developing these resources and exploring for traps 
surrounding the future infrastructure. The province is still under-explored by global 
standards, especially outside of proven oily areas, where large potential volumes remain 
in untested deepwater Mesozoic basins, and inboard poorly explored Palaeozoic basins.  
 
The North West Shelf of Australia provided the initial growth platform for Woodside, 
and Woodside will continue to be committed to further significant exploration in the 
province. With vast discovered, but undeveloped, gas reserves, Woodside is focussed on 
developing existing gas reserves, whilst continuing exploration for oil.  However, the low 
probability of discovering a new oily sub-basin, simple trap geometries, gassy charge and 
the poor record of 3D seismic in proven oily areas, creates a challenge to compete for 
exploration funds for oil exploration on the North West Shelf when compared against 
global oil opportunities. 

 
Introduction 

 
The North West Shelf (Figure 1) is a geographic term applied to the offshore and 
marginal basins areas flanking the northwest coast of Australia (Purcell and Purcell, 
1988a).  
 
Woodside was first awarded a 268,580 km2 exploration permit (PE213H) on the North 
West Shelf in 1963, and by 1965 had equity in a further nine blocks, with a total area of 
367,000 km2, which is equivalent to 0.53, 1.5 and 10.8 times the land area of Texas, UK 
and Holland respectively. Early exploration success within these and subsequent permit 
areas led ultimately (in 1984) to commercial development. By 2001, Woodside operated an 
onshore LNG plant with three processing LNG (liquified natural gas) trains (soon to be 
expanded to four and probably five), and other offshore operated facilities (two offshore 
platforms, two floating production and storage offtake vessels (FPSOs) and a mobile 
offshore production unit (MOPU). These facilities in 2001 cumulatively produced 131 
cargoes of LNG (7.75 million tonnes of LNG and 803 tonnes of liquified petroleum gas 
(LPG)), an average of 536 terrajoules per day of domestic gas, 95,500 barrels of 
condensate per day and 254,000 barrels of oil per day. Also, at the end of 2001 Woodside 
was participating in 34 exploration licences (30 operated) along the North West Shelf, 
covering 101,000 km2 and has equity in 19 production licences and/or retention leases (all 
Woodside operated) covering an area of 5116 km2. Woodside's net reserves (reserves plus 
scope) from just the North West Shelf portion of its portfolio at the end of 2001 was 3.8 
billion barrels of oil equivalent (17.8 trillion cubic feet (Tcf) of gas, 411 million barrels 
(mmbbls) of condensate and 445 million barrels of oil or 78% gas oil equivalent - using 6 
billion cubic feet (bcf) of gas is equivalent to 1 mmbbls of oil). 
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In 1998, Woodside perceived that the potential for material growth of the company 
exclusively through further exploration within the North West Shelf (and Australia) was 
becoming increasingly difficult, due to its focus on exploring for  large oil reserves in the 
dominantly gassy province. Consequently, an international oil exploration and growth 
strategy was developed. As new overseas provinces were evaluated, they were ranked 
against North West Shelf opportunities. 
 
In April 2000, Woodside formed a North West Shelf evaluation team with the specific 
task of improving it’s regional understanding. The work was completed by January 2001 
and some of the results are presented in this technical overview. 
 
The study confirmed that despite Woodside’s ongoing commitment to oil exploration on 
the North West Shelf, this region alone was considered unlikely to satisfy its future oil 
volume targets. The rationale and logic behind this decision is the central theme of this 
paper. 
 
{Figure Caption (1)} 
1. North West Shelf location map. 
 



Figure 1. North West Shelf location map. 
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Geological Synopsis 
 
The published geological evolution and petroleum geology of the North West Shelf is 
described in the proceedings of three Petroleum Exploration Society of Australia 
symposia edited by Purcell and Purcell (1988a, 1994, 1998). The following geological 
synopsis is based on these and other published works, integrated with the results of 
proprietary studies relating to Woodside’s exploration activities over almost 40 years. 
 
The limits of the North West Shelf as defined by this study are shown in Figures 2, 3, and 
4, the underlying tectonic elements in Figure 5, and a set of schematic regional cross-
sections in Figures 6a and 6b. The North West Shelf is comprised of four basins, namely 
the Northern Carnarvon, Offshore Canning (or Roebuck), Browse and Bonaparte basins, 
and one orogenic belt, herein termed the Timor-Banda Orogen. The four basins 
cumulatively comprise the “Westralian Superbasin” (Yeates et. al., 1987), abbreviated to 
WASB hereafter. The WASB is filled with a thick late Palaeozoic, Mesozoic, and 
Cainozoic sedimentary succession relating principally to the fragmentation of Gondwana. 
The Timor-Banda Orogen is the product of a Neogene collision between the distal edge 
of the WASB with the Banda Arc, and arc systems flanking the Southeast Asian 
Sundaland Craton (Figure 5) (Metcalfe, 1999; Keep et. al., 2002). 
 
The WASB lies predominantly within Australian territorial waters, and the Timor-Banda 
Orogen lies exclusively within East Timorese and Indonesian waters (Figure 2). This 
overlap of political and geologic boundaries has historically tended to mask the common 
geology between the two regions, and confuse the outboard limit of the North West Shelf 
(sensu geological province as defined on Figure 2). In contrast, the inboard limit of the 
North West Shelf is generally well defined by the Proterozoic Australian craton. Flanking 
Palaeozoic basins on the edge of this craton (Figure 5) were the main provenance for 
Mesozoic WASB sedimentary sequences.  
 
The outboard limit of the North West Shelf comprises oceanic crust in the south, and 
accreted volcanic arc and accretionary wedge material in the north (Figure 5). The lateral 
limits of the North West Shelf in the southwest and northeast are arbitrarily defined 
where post-Palaeozoic sediments thin onto platform areas. 
 
The combination of sequence stratigraphic modelling within the constraints of a reliable 
and detailed biostratigraphic framework has had a considerable impact on the geological 
understanding of the North West Shelf within Woodside over the last decade. Of 
particular importance was the publication of the Helby et al. (1987) palynological 
zonation for the Australian Mesozoic, which provided a reliable and unified standard for 
correlating strata throughout the region. The currently used sequence stratigraphic model 
is an extension of that defined by Jablonski (1997) for the Dampier Sub-basin, and is 
based on the integration of electric log and biostratigraphic data from over 750 well 
sections which were calibrated against modern seismic data. 
 
The major surfaces within this sequence stratigraphic model have been used to define a 
set of regional picks marking the boundaries of the Woodside play intervals shown as 
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Figure 7. The usage of the play intervals avoids the complications of trying to unify the 
different lithostratigraphic schemes currently being used in the individual basins and sub-
basins. The intervals defined by the play intervals are essentially time-related packages of 
strata bounded by regionally distinct stratigraphic surfaces, and hence are similar to the 
timeslices applied by AGSO within the region (Bradshaw et al., 1988; AGSO North West 
Shelf Study Group, 1994). To assist readers familiar with traditional lithostratigraphic 
nomenclature, the most typical lithostratigraphic unit associated with each play interval is 
placed in parentheses after the Woodside play names (e.g. J20 (Legendre Formation)). 
The play names also have an age context, with TR=Triassic, J=Jurassic, K=Cretaceous, 
and T=Tertiary. 
 
Significant tectonic events from within and beyond the study area are illustrated in Figure 
7 (after Metcalfe, 1999; Norvick et al., 2001; Norvick and Smith, 2001; Muller et al., 
2000; Keep et al., 2002; Hill and Raza, 1999) and the significant Jurassic and Early 
Cretaceous seismic events and intervening play intervals are summarised in Table 1. 
 
The early Palaeozoic Cambro-Ordovician section is not described here, since this section 
is either deeply buried or absent, and has not materially contributed to the petroleum 
prospectivity of the study area. The early Palaeozoic is overlain in parts of the Bonaparte 
Basin with a thick salt deposit, which has later mobilised and formed salt-cored structures 
in some areas (see Figure 7 of Bradshaw et al., 1994, for palaeogeographic setting; Smith 
and Sutherland, 1991; Gunn et al., 1988a). The overlying Devonian to Permian section 
relates to the first two of three significant periods of Gondwanan terrain dispersion where 
continental fragments drifted northward and subsequently accreted to the Eurasian craton 
(Metcalfe, 1999). These sequences (PZ20-50 inclusive; Figure 7) form two synrift and 
sag cycles, filled with variable marine, deltaic and glacial deposits. It is not possible to 
image or map these Palaeozoic successions on seismic data over the entire study area, as 
they are overlain, particularly in basinal areas, by thick Mesozoic deposits. The 
Palaeozoic basin history, best described by Bradshaw et al. (1994), is pieced together 
from local areas of the WASB where Palaeozoic horizons can be imaged and mapped. 
Such regions include the Petrel Sub-basin of the Bonaparte Basin (Figure 2) (Mory, 1988; 
Colwell and Kennard, 1996), within shelfal areas where the onshore Palaeozoic Canning 
Basin extends offshore beneath the Offshore Canning Basin and in the inboard shelfal 
areas of the Northern Carnarvon Basin (e.g. Delfos and Dedman, 1988; and Bentley, 
1988). Elsewhere there are occasional windows of information through the thick cover by 
virtue of deep seismic imaging (e.g. Browse Basin, Struckmeyer et al., 1998).  
 
The second of the two main Palaeozoic rift phases occurred in the Late Carboniferous, 
and is the most important rifting event on the North West Shelf, as it gave rise to the 
WASB (AGSO NORTH WEST SHELF STUDY GROUP, 1994). It relates to the onset 
of the Sibamasu block separation (Metcalfe, 1999), and resulted in a thick (approx. 10 
km), continuous fill of mainly Permian and Mesozoic sediments (Bradshaw et al. 1988), 
covering the entire NE-SW striking Westralian Basin area (Figure 4). This contrasts with 
the earlier successions which are interpreted to be less contiguous, and more influenced 
by the NW-trending early Palaeozoic structural grain (Figure 5) (Bradshaw et al., 1994). 
Late Carboniferous to Early Permian synrift fill comprises glacio-fluvial sediments which 
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pass upwards into a thick sag section. The sag section itself comprises two units, marine 
Permian shelfal and shallow water carbonates and sands, overlain, after a major eustatic 
lowstand, by a thick succession of shelfal Triassic shales, which thicken and become 
more distal to the northwest (Nicoll and Foster, 1994) (Figure 7). 
 
The third significant period of terrane dispersion from the Gondwanan margin occurred 
in the Late Triassic to Late Jurassic, associated with the Norian drift of the Lhasa block 
and the subsequent drift of the West Burma and Woyla blocks into the Late Jurassic 
(Metcalfe, 1999).   
 
The Late Triassic Carnian to Norian succession was deposited following a regionally 
extensive period of significant tectonism, erosion and uplift along the edges of the craton, 
known as the “Fitzroy Movement” (Forman and Wales, 1981). Synchronous events (e.g. 
the Scott Reef-Buffon trend was created and the Bedout High further accentuated), are 
evident on seismic and well data in the offshore Bonaparte, Browse and Canning basins, 
suggesting a regional tectonic event. These were related either to breakup events from the 
Gondwanan margin or, more likely, to docking of continental blocks along the adjacent 
Irian/Papua New Guinea subduction margin. Regardless of the cause, the hinterland uplift 
and tectonic events associated with the Fitzroy Movement resulted in the influx of a thick 
sequence of (TR20) sediment in the Northern Carnarvon Basin, pouring out from the 
uplifted onshore Canning Basin region (Figure 8). These (predominantly) thick deltaic 
successions prograded some 500 km from the margin of the Onshore Canning basin, to 
the Exmouth Plateau, and into the marine embayment of the Wombat - Timor Trough 
(Nicoll and Foster, 1994). 
 
The Lhasa block rifted from the northern Indian Margin during the Norian  (Metcalfe, 
1999). In the WASB this event is associated with a major flooding surface within the 
basal section of the Rhaetian, which is mapped as the TRR seismic event (Figures. 7 and 
9).  
 
Following the drift of the Lhasa block, extension along the Gondwanan margin 
continued, and the West Burma and Woyla Blocks subsequently drifted from the 
Australian margin of Gondwana. Metcalfe (1999) is not specific about the exact drift ages 
of the fragments and herein a more detailed model is proposed to explain the stratigraphic 
and structural observations from the WASB. This model is consistent with the work of 
Muller et al. (1998), and is based on preserved magnetic marine anomalies, which 
suggest that Oxfordian and Valanginian drift events respectively formed the Argo and 
Cuvier oceanic basins.  
 
The interpreted age of block rotation in different areas, from latest Triassic to Early 
Cretaceous, is shown as Figure 5, while the age of the major rifting events (rift onset and 
cessation ages) along the margin is shown as Figures 7 and 9. The proposed model to 
explain these observations is shown as Figure 10, whereby the West Burma Block was 
comprised of three sub-blocks which rifted during the Sinemurian, Oxfordian and 
Tithonian, respectively. It is not considered crucial that the blocks fully rifted and drifted 
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from the Gondwanan margin during these periods, since failed rift events may also have 
resulted in associated flooding events further inboard onto the craton. 
 
In the proposed model, West Burma Block 1 (Figure 10) began to rift in the latest 
Hettangian as inferred from the dating of a major basinward shift of facies at the CTS5 
seismic event, which marks the onset of a major phase of sand influx. This extension 
continued until break-up in the Sinemurian. The subsidence caused by the emplacement 
of oceanic crust, and the change to drift tectonism is expressed inboard as the major JP1 
flooding event (seen over the North Carnarvon to Browse area – Figure 5). This flooding 
event becomes progressively less distinct in the Bonaparte Basin, as this northern area 
was beyond the limit of rift block rotation (Figure 5) and remained largely unaffected. 
The amount of accommodation space created by this event is shown by the thickness of 
the overlying J20 section (Figure 11a), which comprises a massive succession of deltaic 
prograding sediments (Figure 12) in the outboard Beagle area (Figure 2). 
 
Rifting of the second West Burma Block from the margin (Figure 10) began in the 
Callovian (JC seismic event) and was complete by the Oxfordian (JO seismic event) 
(Figures 7 and 9). The palaeogeography of the synrift J30 Callovian section is shown on 
Figure 13, and highlights the dramatic change in palaeogeography from the underlying 
broad delta plain in the Bathonian (Figure 12), to deposition within narrow rift valleys. 
Again, because of the distance of the Bonaparte Basin from the main rift axis, and the 
area of block rotation (Figure 5), the section in this area remained largely unaffected by 
the southern rift event, with deposition continuing over a stable broad deltaic plain 
(Figure 12). Rift related valleys formed during this phase. Based on the log motifs and 
models presented by Ravnas and Steel (1998) for marine rift systems, these features were 
initially underfilled but were subsequently infilled by marine shale and sandstone, some 
of which appear to be shed from the craton during lowstand events. 
 
In the Tithonian, it is interpreted that a third West Burma Block separated from the 
margin, from a position outboard of the Bonaparte Basin and that the oceanic crust and 
magnetic anomalies recording this event have been subducted (Figure 10). The only 
direct evidence for this model is the interpreted block rotation observed in the northern 
Bonaparte wells, and the associated significant unconformity near the base of the 
Tithonian (JT, top D. swanense Zone) observed in well sections (Pattillo and Nicholls, 
1990) (note this reference labelled this event as the Intra-Kimmeridgian event within the 
D. swanense dinoflagellate zone of Helby et al. (1987), which is now interpreted to be 
near base Tithonian in age).  
 
In the Vulcan, Sahul and Flamingo synclinal areas the onset of this rifting event is 
interpreted to be marked by the JK intra-Kimmeridgian seismic event, which records the 
relative deepening and reduction of clastic sediment supply into the already sediment-
starved rift basin areas. The rift and associated flood is a precursor to a circum - Ashform 
Platform oceanic current (see Figure 14) which ended the relative restriction of the 
Vulcan Sub-basin failed rift arm (which existed prior to the Tithonian rift during J40 
time). The basal condensed section which marks the rift onset, flood and change in 
circulation conditions is a marl unit in the Sahul Syncline (Gorter and Kirk, 1995).  
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Inboard rift shoulder areas were eroded during footwall uplift and subsequent relative 
lowstand periods and basinal sands were then deposited in the Barrow-Dampier, Vulcan 
and Nancar sub-basins. 
 
The tectonic influence of the Tithonian rifting event on the southern portion of the margin 
was minimal, as these depocentres were located at some distance from the main active 
rift area (see Figure 15). 
  
In the Berriasian, Greater India began to rift from Gondwana (Figures 7, 9 and 10), with 
the formation of a long narrow rift basin running down the length of the current Perth 
Basin. The onset of this rift caused a marine flooding event (K seismic event on Figures 7 
and 9) which is observed over the whole margin. It is interpreted that the Perth Basin rift 
valley then disgorged a massive sedimentary load into the southern Northern Carnarvon 
Basin ("Barrow delta"; Figure 16). Uplift of hinterland areas inboard of the Browse Basin 
also produced local progradational deltaic deposits in the Browse area (Figure 16).  
 
With the separation of Greater India in the Valanginian (Figures 7, 9 and 10), the entire 
WASB was subject to regional post-rift sag, and the various underlying sandy 
environments were drowned by a regional marine flooding (KV seismic event) (Figure 
17). In the south, the remnants of the Barrow delta, now cut off from its Perth Basin 
hinterland, were reworked by transgression, and a small local delta prograded in the 
offshore Broome area. 
 
The isopach between the Oxfordian and Valanginian seismic (see Figure 18) illustrates 
the combined thicknesses of the Barrow delta and underlying Oxfordian rift basins in the 
Barrow region, the Oxfordian rift basins in the Dampier Sub-basin, the Oxfordian and 
Tithonian rift sequences in the Vulcan Sub-basin, and the Tithonian rift basin in the 
Malita Graben area. What is particularly significant from this figure is the interpreted 
absence of other rift basins from the remainder of the margin, particularly within the 
offshore Browse and Canning Basin regions. 
 
The thermal sag phase for the WASB following the separation of greater India in the 
Valanginian can be divided into three broad units; 
•  Early Cretaceous K20/K30 interval (KV - KA seismic events)  
•  Middle to Late Cretaceous K40/K50/K60 interval (KA -T seismic events) 
•  Tertiary T10/T30 interval (T-Water Bottom seismic events). 
Isopachs for these intervals are shown as Figures 19, 20 and 21, respectively. 
 
What is clear from these maps is that isopach thick intervals from the earliest sag unit 
(K20/K30) (Figure 19) do not overlie the rift basin areas highlighted on Figure 18, as 
would be expected in a simple rift-drift steershorn model. This is because many areas of 
the margin were starved of sediment throughout the K20/K30 period, and the basin was 
underfilled with sediment. This “bathymetric effect” can, and has, led to the 
misinterpretation of anomalous subsidence curves as explained  by Kaiko and Tait 
(2001).  
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The early sag fill in the K20/K30 sequence was deposited as marine shales within a long 
(partially restricted) marine embayment. This deposition was punctuated by occasional 
regressive events, providing important reservoir facies on the inboard margin. The 
K20/K30 sequence is overlain by a regionally distinct marker (both seismically and 
lithologically) along the entire margin (Figures 7 and 9), which is termed the KA event. 
This event relates to the separation of Greater India from Antarctica and the 
establishment of open oceanic conditions (Figure10). KA marks the first flooding 
associated with the onset of a mature ocean phase (Bradshaw et al., 1988) and is 
recognised by a radiolarite-rich section which results from upwelling of deep oceanic 
water enriched in silica and more oxygenated oceanic circulation currents (Ellis, 1987).  
 
The K40 section forms the uppermost portion of the regional Cretaceous seal over the 
WASB area (Figure 7). Locally, K50 and K60 units can be shaley, forming sealing strata. 
Commonly underlying units down into the uppermost Jurassic are also shaley, but K40 is 
the most extensive shale unit and forms the ultimate regional topseal.  
 
During the Campanian, uplift of the hinterland (in response to rift events along the 
Australian southern margin), resulted in a phase of inversion in the Exmouth Plateau and 
Exmouth Sub-basin areas (Tindale et al., 1998; Bradshaw et al., 1998). This tectonic 
event marked the onset of transpressional structural growth of pre-existing rift related 
structures within the Barrow and Dampier sub-basins (e.g. Barrow Island). Further north 
in the Caswell Sub-basin, hinterland uplift resulted in a block rotation of the margin (tilt 
event on Figure 7), where sediments inboard of the tilt line were eroded and redeposited 
into deeper water environments (Blevin et al., 1998a). This regional tectonism is 
interpreted to be related to the far field plate movements, associated with the onset of 
Tasman Sea spreading (Figure 7) (Bradshaw et al., 1998). Further sand influxes into the 
Caswell and southern Vulcan areas occurred in the Maastrichtian, and following the base 
Tertiary onset of Coral Sea spreading (Figure 7), the North West Shelf had moved 
sufficiently far north for carbonate factories to be established in areas away from clastic 
input. Following a major plate re-organisation in the middle Eocene, Australia moved 
rapidly northwards, and carbonate deposition became dominant (Baillie et al., 1994). 
Reworking of carbonates from the factory tops led to massive carbonate progradation, 
infilling the underfilled accommodation space provided by the underlying rift basins.  
 
In the Neogene, the WASB was affected by further regional tectonism, in response to two 
processes. The first was restricted to the Bonaparte Basin area, and was the direct product 
of the collision of the irregular edge of the Australian plate with the Java-Banda arc 
system (Keep et al., 2002) (Figure 5). The second effect, which is dominant in the North 
Carnarvon and Browse basin areas, relates to the change in the regional stress field 
associated with the formation of the Irian-PNG Fold Belt (Hillis et al., 1997). This latter 
process accentuated the transpressional structures formed in the Campanian, and is also 
used to explain the formation of synchronous inversion structures in southeastern 
Australia (Dickinson et al., 2001).  
 
The timing of both Neogene events is shown on Figure 7. The New Guinea Fold Belt 
formed between about 12 Ma and 3 to 4 Ma (Hill and Raza, 1999) and the Sumba-Banda 
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collision occurred between 8 Ma and 3 Ma (Keep et al., 2002). In New Guinea the end of 
the foldbelt phase was marked by a change from convergent to transpressional plate 
motion (Hill and Raza, 1999). In the Timor area the 3 Ma tectonic event records the 
cessation of Australian crust subduction into the Banda Arc, as it locally jammed the 
subduction system. Australia’s northward movement was maintained, however, by the 
initiation of a north-facing subduction zone along the Wetar and Flores thrust system 
(McCaffrey, 1996; Genrich et al, 1996). The 3 Ma tectonic event is also evident on areas 
of the Sundaland craton adjacent to Sumba where massive structural inversion events 
occurred (Bransden and Matthews, 1992), and a synchronous change in plate motions 
also occurs in the Pacific at this time (Pockalny et al., 1997).  The 3 Ma event is thus 
likely to be an event of regional significance. 
 
The regional Neogene tectonism resulted in breach of some traps and release of 
hydrocarbons from existing hydrocarbon accumulations and the leakage to the seabed. It 
has been suggested by Hovland et al. (1994) that this seepage assisted in the formation of 
bioherms via the hydrocarbons providing nutrients for bacteria, which were, in turn, part 
of the food chain for organisms such as Halimeda codiacean algae. The association of 
leakage with surface biohermal mounds has also been noted by Bishop and O'Brien 
(1998) in the Nancar area and over the greater Timor Sea area by O'Brien et al. (2002). 
Since the 1970s it is has also been a suspected mechanism for the formation of the 
massive atoll over the Scott Reef field (Figure 3).  However, whether all or just some of 
the Neogene to present-day reefs have been seeded from hydrocarbon leakage is not 
clear. 
 
O'Brien and Woods (1995) and Cowley and O’Brien (2000) also describe interpreted 
seepage-related amplitude anomalies from within the shallow sedimentary section (called 
hydrocarbon related diagenetic zones, HRDZs) which are present over many of the 
margin's accumulations. These features are believed to be formed by the emplacement of 
carbonate cements within shallow Tertiary sand units via the oxidisation of migrating  
thermogengic hydrocarbons.  
 
{Figure (2-21) and Table (1) Captions} 
2. North West Shelf areal subdivisions, distribution of exploration wells and location of 
key wells. 
 
3. Major hydrocarbon field locations and regional bathymetry map of the North West 
Shelf. 
 
4. Regional JO seismic event (Oxfordian) depth structure map. Locations A-H show the 
locations of the schematic cross-sections illustrated in Figure 6a and 6b. 
 
5. Simplified regional tectonic elements map (modified after AGSO, 1994), illustrating 
the extent and timing of major block rotations.  
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6. Simplified regional geological cross-sections. Section locations are shown on Figure 4. 
From south to north they are: a) A: Exmouth Sub-basin, B: Barrow Sub-basin, C: 
Dampier Sub-basin, D: Browse Basin; b) E: Vulcan Sub-basin, F: Londonderry High –
Timor Trough, G: Sahul Platform – Malita Graben, H: Petrel Sub-basin. 
 
7. Chronostratigraphic summary of the North West Shelf. 
  
8. Simplified palaeogeographic map of the upper TR20 Triassic sequence (Norian). 
 
9. Chronostratigraphic Post-Palaeozoic summary of selected North West Shelf sub-
basins. 
 
10. Simplified Pleinsbachian plate reconstruction and sequence of major block 
rifting/separation events affecting the North West Shelf.  
 
11. Composite map of JP1-JO isopach map (J20 + J30 sequences) in the Northern 
Carnarvon Basin and offshore Canning Basin area and TR-JO 
(TR10+TR20+J10+J20+J30) isopach map in the Browse and Bonaparte basins area. 
 
12. Simplified J20 sequence (Sinemurian - Callovian) palaeogeographic map. 
 
13. Simplified J30 sequence (Callovian) palaeogeographic map. 
 
14. Simplified lower J40 sequence (Oxfordian) palaeogeographic map. 
 
15. Simplified lower J50 sequence (Early Tithonian) palaeogeographic map. 
 
16. Simplified K10 sequence (Berriasian - Valanginian) palaeogeographic map. 
 
17. Simplified K20 sequence (Valanginian-Barremian) palaeogeographic map.  
 
18. JO (Oxfordian) to KV (Valanginian) isopach map incorporating the J40, J50 and K10 
sequences). 
 
19. KV (Valanginian) to KA (Aptian) isopach map. 
 
20. KA (Aptian) to T (base Tertiary) isopach map.  
 
21. T (base Tertiary) to water bottom isopach map.  
 
Table  
1. Summary of main North West Shelf megasequence boundaries. 
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Onshore Canning

North
Carter

Londonderry
High

Flamingo
Syncline

South
Carter

Swan
Graben

Vulcan
Terrace

Nancar Trough

Vulcan

Province

Basin

Sub - Basin

Exploration Wells

LEGEND

Barrow

Dixon

    

Tectonic
Sub - Division

Bonaparte

Bonaparte
Inboard Shelf

Bonaparte
Outboard

Area

Browse Inboard
Shelf

Heywood
Graben

Caswell
Sub-basin

Sahul Flamingo
Nancar Area

Browse

Sahul Syncline

Ashmore
Platform

Barnacle
Hinge Kelp

High

Yampi Shelf

Onshore
Petrel

Exmouth

North Carnarvon

Dampier

West
Victoria
Syncline

East
Victoria
Syncline

Beagle
Sub-basin

W
est 

Lambert S
helf

Candace
Terrace

Peedamulla
h Shelf

Onshore North
Carnarvon
Sub-basin

Onshore Cape
Range Area

Exmouth
Gulf

Macedon
High

Exmouth Plateau
Southern Flank

Central
Exmouth
Sub-basin

Exmouth
Plateau

East
Barrow

Sub-basin

G
or

go
n 

Pl
at

fo
rm

A
lp

ha
 A

rc
h

Ningaloo
Arch

Enderby
Terrace

East
Dampier

Sub-basin

West

Dampier

Sub-basin
Rankin

Platform

Exmouth
Plateau

Northern Flank

Barow
Island
High

Lowendal
Low

Northern Exmouth

Sub-basin

W
es

t B
ar

ow
S

ub
-b

as
in

Beagle
Sub-basin

Exmouth Plateau

Brigadier High Area

B

A

A

B

Exmouth
Plateau

Bambra-1

Barrow Island-1 To 28

Legendre-1

Dill-1

"Linda-1, 1St1"

Perseus-1

Eaglehawk-1

North Rankin-1

Leatherback-1

Egret-1

Griffin-1

"Hilda-1, 1A"

Woollybutt-1



Western Australia

Northern Territory
Political (State) Boundary

0 100 200

kilometres

Argo / Lhasa
Microplate

20° S

10° S

11
5°

 E

12
0°

 E

12
5°

 E

20° S

10° S

11
5°

 E

12
0°

 E

12
5°

 E

13
0°

 E

Darwin

Kupang

Broome

Exmouth

Karratha

Suai

Wyndham

Roti
Savu

Tim
orSumba

Meratus
Quiantang

13
0°

 E

15° S

Australian Craton

Exmouth

A

B

A

Figure 3. Major hydrocarbon field locations and regional bathymetry map of the North West Shelf.

Gasfield

Oilfield

LEGEND

WASB Province

105

1

2

3
4

5

65
66

67

70

72

73

71

69

68

97

102

98

99

101

100

104103

106

107

16

6

7

8

9

10
11

12

13

14

18

15

19

20

21

22

17

23

24
25

26
27

28

29

30

31

32
33

34

41

40

39
38

37

36

35
42

43

44

45

46

47

48

64

49

5051
52

53

54

55
56

57
58 59

60 61

62

63

Bathymetry
< 100m

100 - 200m

200 - 750m

750 - 2000m

> 2000m

B

74
75

80

76
77

78

79

81

83

82

87

86

84

85

90
91

89

88

92
96

95

94

93

1.  Rough Range
2.  Sirius
3.  Eendracht
4.  Scarborough
5.  Jupiter
6.  Laverda
7.  Enfield
8.  Novara/Coniston

9.  Vincent
10. Pyrenees/Macedon
11. Leatherback
12. Caretta
13. Blencathra
14. Outrim
15. Tubridgi
16. Roller/Skate
17. Nimrod
18. Griffin
19. Saladin
20. Chinook/Scindian
21. Chervil/Elder
22. South Pepper

23. Woollybutt
24. Spar
25. Maitland
26. Barrow Island/Deep
27. Harriet
28. Gipsy/Rose/Lee
29. Linda
30. Bambra
31. Wonnich
32. Campbell
33. John Brookes
34. West Tryal Rocks
35. Chrysaor
36. Maenad
37. Jansz/Io
38. Orthrus
39. Geryon
40. Dionysus
41. Iago
42. Dixon
43. Reindeer/Caribou

44. Stag
45. Wandoo
46. Saffron
47. Gorgon
48. Legendre
49. Wanaea
50. Cossack
51. Montague
52. North Rankin
53. Tidepole
54. Echo/Yodel
55. Dockrell
56. Perseus
57. Searipple
58. Eaglehawk
59. Egret
60. Lambert / Deep
61. Hermes
62. Mutineer
63. Angel
64. Talisman
65. Nebo
66. Phoenix
67. Arquebus
68. Brecknock South
69. Brecknock
70. Gwydion

71. Scott Reef
72. Brewster
73. Argus
74. Echuca Shoals
75. Cornea
76. Maret
77. Tahbilk
78. Montara
79. Bilyara
80. Keeling
81. Skua
82. Puffin
83. Swan
84. Challis
85. Jabiru
86. Pengana
87. Oliver
88. Buffalo
89. Laminaria
90. Corallina
91. Jahal
92. Kakatua
93. Elang West
94. Bayu/Undan
95. Hingkip
96. Elang
97. Prometheus
98. Tern
99. Turtle
100. Waggon Creek
101. Barnett
102. Petrel
103. Chuditch

104. Troubadour
105. Sunrise
106. Evans Shoal
107. Lynedoch
108. Vinck
109. Investigator
110. Zeewulf
111. Resolution
112. Scafel
113. Rivoli
114. Bundegi
115. Ridley
116. Cadell
117. Bowers
118. East Spar
119. Zeepaard
120. Urania
121. Wilcox
122. Corvus
123. Caswell
124. Psepotus
125. Focus
126. Adele
127. Crux
128. Talbot
129. Paqualin
130. Maple
131. Tenacious
132. Audacious
133. Ludmilla
134. Buller
135. Abadi
136. Torrens
137. Ascalon
138. Fishburn
139. Penguin
140. Blacktip
141. Weaber

108 109 110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126
127

128

129
130

131

132

133

134
135

136

137

138

139

140

141



JO Depth
0

7921

1000

2000

3000

4000

5000

6000

7000

m
et

re
s

Western Australia

Political (State) Boundary

Browse

Timor Banda Orogen

Bonaparte

North Carnarvon

0 100 200

kilometres

Greater India
Microplate

Argo / Lhasa
Microplate

20° S

15° S

10° S

11
5°

 E

12
0°

 E

12
5°

 E

20° S

10° S

11
5°

 E

12
0°

 E

12
5°

 E

13
0°

 E

Darwin

Kupang

Broome

Exmouth

Karratha

Suai

Wyndham

Roti
Savu

Tim
orSumba

Meratus
Quiantang

13
0°

 E

15° S

Northern Territory

Figure 4. Regional JO seismic event (Oxfordian) depth structure map. Locations A-H show the locations of the schematic cross-sections illustrated in Figure 6a and 6b.
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Figure 7. Chronostratigraphic summary of the North West Shelf.
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Australian Craton

West Burma
Microplate

Offshore
Canning

(Roebuck)

Gasfield

Oilfield

LEGEND

(See Fig. 3 for details)



0

6685

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

m
et

re
s

Western Australia

Political (State) Boundary

Browse

Timor Banda Orogen

0 100 200

kilometres

Greater India
Microplate

Argo / Lhasa
Microplate

Australian Plate

20° S

15° S

10° S

11
5°

 E

12
0°

 E

12
5°

 E

20° S

10° S

11
5°

 E

12
0°

 E

12
5°

 E

13
0°

 E

Darwin

Kupang

Broome

Exmouth

Karratha

Suai

Wyndham

Roti
Savu

Tim
orSumba

Meratus
Quiantang

13
0°

 E

15° S

Northern Territory

Figure 21. T (base Tertiary) to water bottom isopach map. 

Bonaparte

LEGEND
200m Isobath

Offshore Canning

N.B. Limit of 200m Isobath line
approximates the limit of Tertiary progrades.

West Burma
Microplate

North
Carnarvon

Gasfield

Oilfield

LEGEND

(See Fig. 3 for details)



Table 1. Summary of main North West Shelf megasequence boundaries.
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131
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149
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410
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313
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39
32
5
2 Top T40

T40
T30
Top T20/ Base T30
Top T10/ Base T20
Top K60/ Base T10
Top K50/ Base K60
Top K40/ Base K50
Top K30/ Base K40
Top K20/ Base K30
Top K10/ Base K20
Top J50/ Base K10
Top J52/ Base J57
Top J40/J47/BaseJ50/J52
Top J42/ Base J47
Top J30/ Base J40/ J42
Top J20/ Base J30
Top J10/ Base J20
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Exploration History 
 
The exploration history of the North West Shelf is described by Purcell and Purcell 
(1994), and the history of Australia’s exploration industry (including a history of the 
North West Shelf), by Wilkinson (1991). Systematic exploration for hydrocarbons began 
in the early 1950s with field mapping of onshore and island areas. Onshore seismic 
followed, and the first exploration well was drilled at Rough Range 1 in 1953 (Fig. 2). 
Offshore exploration resulted in, with major oil and gas discoveries in the early 1960s, 
with significant discoveries being made through to the present day. A year-by-year 
summary of this exploration record is displayed as Figure 22, which shows the amount of 
2D and 3D seismic acquired, the number of exploration wells drilled, success rates (for 
both zero and 20 million barrel oil equivalent cut-offs), total volumes discovered and 
average field sizes. The cumulative discovery history ("creaming") curves are shown by 
phase (oil, condensate and gas) as Figure 23, and by sub-basin area as Figure 24, and the 
detail of the oil discovery volumes is shown as Figure 25. In all cases the cumulative 
volumes are plotted against exploration well counts rather than time, so that the annual 
variation in drilled exploration wells does not distort the curve shape. Discovered 
volumes and basic success rates are detailed schematically by area as pie charts on Figure 
26, which also shows the current coverage of 3D seismic data and Woodside’s historical 
and current acreage holdings. 
 
The data on Figures 23 to 25 are from Woodside’s proprietary database, which classifies 
all wells into exploration or non-exploration types. Many “exploration” wells that 
discovered extensions to known pools are reclassified in the Woodside database as 
appraisal wells. Similarly, "appraisal" wells that discovered new pools are classified as 
exploration wells. Thus, the total exploration well counts shown on Figure 22 (and on all 
other figures and tables in this paper) will not necessarily match other published well 
count data. The distribution of wells classified as genuine exploration wells is shown on 
Figure 2. 
 
Woodside's database also contains estimates of recoverable oil, condensate and gas 
volumes for all fields (conversion of gas to oil equivalent is based on 6 billion cubic feet 
of gas is equal to 1 million barrels of oil). Reserve estimates vary widely in quality from 
published certified and audited volumes, and estimates from annual reports, to those 
based on hearsay, where no documentation of field volumes exists in the public domain. 
It is not possible, therefore, to compile a database of in-place or hydrocarbon pore 
volume estimates, which would make a better basis for data comparison and tabulation. 
In addition, where multiple estimates are available, the estimate which corresponds to the 
“scope volume” has been used in plots and tables herein; i.e. the volume based on a 
theoretical recovery volume, unshackled by development economics. In essence, our 
database is imperfect, but we believe the conclusions and trends derived from the data are 
still valid. 
 
Discovery history plots on Figures 23 to 25 do not include any measure of “reserves 
growth”, i.e. a measure of how the reserve estimate has changed through time. On these 
plots, the best estimate of the scope recoverable volume for the entire field is allocated to 
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the spud date of the "discovery well". When a well first penetrates a hydrocarbon pool 
this well is deemed to be the “discovery well”, even though the significance of the 
discovery may not become clear for many years, and a later well may actually be credited 
with the “discovery”. Examples of this include North Rankin 4, which first penetrated the 
Perseus gas accumulation in 1972, whereas Perseus 1 was not drilled until 1996 (Taylor 
et al., 1998). In our database, therefore, the current scope Perseus reserve estimates are 
attributed to the North Rankin 4 well, and Perseus 1 is classified as an appraisal well. 
Similarly Hilda 1 drilled in 1974 is the discovery well for the Griffin/Ramilles Field (i.e. 
not Griffin 1, drilled in 1989), the discovery well for the Woollybutt Field was West 
Barrow 1 in 1982 (not Woollybutt 1, drilled in 1997), and Brewster 1 drilled in 1980 is 
the discovery well for the Gorgonichthys/Titanichthys/Dinichthys discovery made in 
1999/2000. 
 
The relative volume of discovered oil, condensate and gas reserves, as shown on Figures 
23 and 26, highlights the gas-prone nature of the North West Shelf, in that by billion oil 
equivalent (boe), the margin is 92% gas or condensate, with only 8% of the estimated 
reserves being oil. Discovery data and volumes by sub-basin are shown on Figure 26, and 
it is evident that only 33 Tcf or 22% of gas reserves have been developed, and some 119 
Tcf of gas remains undeveloped. This is in contrast to oil reserves, of which 67% have 
currently been developed. 
 
The various trends illustrated on Figures 22 to 26 show that exploration on the North 
West Shelf has gone through four phases:- 
 
•  The “Early Years” (1953-1970), with limited offshore drilling, where the only 
significant discoveries were Barrow Island (Barrow 1, 1964) and Legendre (Legendre 1, 
1968). 
•  The 1971-1980 “Big gassy fish in a barrel” era when most of the large gas fields were 
discovered on open grids of poor quality 2D seismic data (North Rankin, Goodwyn, Scott 
Reef in 1971, Gorgon and Brewster in 1980). 
•  The 1981-1996 “2D seismic oil” era, when following the inability to develop the 
discovered gas reserves, and an increase in oil prices, most of the exploration effort was 
targeted at discovering oil via the use of more dense 2D seismic datasets (i.e. South 
Pepper in 1982, North Herald, Chervil, Jabiru, Harriet in 1983, Saladin in 1985, Wanaea 
in 1988, Cossack in 1989, Roller in 1990, Wandoo in 1991, Stag in 1993 and Laminaria 
in 1994). 
•  The 1997-2001 “3D seismic oil” era, where large multi-client seismic surveys were 
acquired over the proven oil-prone portions of the margin, and mop-up of the remaining 
oil potential was the primary exploration focus. 
 
There has been a general increase in drilling activity, from 1-5 wells per year in the early 
years, to an average of around 40 wells per year in the 3D era. This exploration effort 
discovered approximately two-thirds of all the discovered hydrocarbons during the “Big 
Gas” phase of exploration, when most of the primary large structures were drilled. Since 
then, approximately 100 mmbbls of oil reserves and 400 to 700 bcf of gas reserves have 
been discovered annually, even though the average oil field size has steadily decreased 
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through time. The total annual oil volumes have been maintained through increased 
numbers of exploration wells, and not via an exploration bonanza based on new 3D 
seismic- based plays. The reason for this rests with the inherent geology of the WASB 
margin. 
 
The main trap styles on the North West Shelf are simple drape anticlines (over underlying 
horsts), and horst/tilted fault block structures at the level of the base regional seal 
(Longley et al., 2002). Throughout the evolution of the margin, the main clastic sediment 
provenance was from the southeastern cratonic flank, so the stratigraphic level of top 
porosity beneath the regional seal (Figure 7) generally becomes progressively younger 
towards the cratonic edge (Figure 27). Regional Valanginian uplift in the south of the 
Exmouth Sub-basin, beneath the KV seismic event, has reversed this trend in part, and in 
other areas, isolated sands at shallower levels locally complicate the detail of the top 
porosity surface. Some 97% of all hydrocarbons discovered to date occur at this base 
regional seal level, even though numerous wells along the margin have tested traps at 
deeper levels, i.e., the concentration of hydrocarbons beneath the base regional seal is not 
a product of selective sampling – many wells have unsuccessfully tested deeper 
structures. Failure at many of these deeper levels is due to a lack of effective sealing units 
(topseal and flank seal for fault bounded traps). Rare effective sealing strata at other 
levels are present (Figure 7), however, to date, these traps contain an estimated 3.1% of 
the regions reserves being split into 2.2% within Palaeozoic units within the Petrel Sub-
basin and 0.9% beneath Jurassic intra-formational seals (eg Lambert 2 gas discovery, 
Kingsley et al., 1998). Furthermore, only three significant hydrocarbon accumulations 
totalling some 0.2% of the margin's estimated reserves have been discovered above the 
regional seal (Maitland, Swan and Puffin; Figures. 3 and 7). All of these shallow 
occurrences are associated with obvious fault conduits, but in general, the regional seal is 
highly effective. 
 
The distribution of the region's estimated reserves by phase and reservoir level is shown 
on Figure 28.  Most of the oil is reservoired in the Late Jurassic and Early Cretaceous 
section, and most of the gas is reservoired within Middle Jurassic to Triassic sandstones. 
 
The main trap styles present along most of the North West Shelf are easily identified by 
good quality 2D seismic data. The advent of good-quality 2D seismic, and using local 
well control to define the level of top porosity, meant that most of the secondary simple 
traps on the WASB were identified and drilled during the “2D seismic oil” exploration 
phase. This left relatively little potential to be mopped up by subsequent 3D seismic 
exploration programs. Even in areas with no well control, common vertical stacking of 
target horizons meant that detailed knowledge of the stratigraphic level of the base 
regional seal porosity level was usually not required. 
 
The primary impact of 3D on the North West Shelf has been: 
•  The better definition (decreased range) of discovered resource volumetric estimates, 
prior to field development (e.g. Perseus, Taylor et al., (1998); Legendre, Willetts et al. 
(1999)); 
•  The discovery of smaller nearfield traps, not readily apparent on 2D datasets; 
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•  To provide a consistent volume of seismic velocity data enabling the confident depth 
conversion of subtle traps (e.g. East Spar, Craig et al. (1997) and Woollybutt, Hearty and 
Battrick (2002); 
•  To identify potentially complex structural and stratigraphic traps, based on amplitude 
and AVO (amplitude versus offset) analysis (e.g. Linda, Apache (2002); Enfield, Bussel 
et al. (2001). 
•  To gain a better understanding of the geological evolution of the margin from the 
better imaging of deeper seismic events. 
 
The depth conversion impact of 3D on discovered volumes has been modest to date, 
since there generally has to be an inflection or structural nose on existing two-way time 
or velocity data, which the depth conversion process accentuates into a robust depth 
closure. These features, although significant, are by their very nature uncommon and, 
because of their subtle relief, they are very unlikely to contain large hydrocarbon volumes 
(e.g. greater than 100 mmbbls of recoverable reserves). 
 
The amplitude and AVO impact of 3D data on exploration is proven through numerous 
small discoveries, such as the amplitude supported onlap trap intersected by Linda 1 in 
the Barrow Sub-basin (Apache, 2002), and the larger Enfield lowside fault block oil and 
gas field trap in the Exmouth Sub-basin (Bussel et al., 2001). These successes attest to the 
impact of 3D on new exploration plays, however, in comparison with the number of 
prospects drilled, and the volume of 3D acquired, the results in terms of significant oil 
discoveries are very poor. This is because most of the areas with proven oil prospectivity 
are relatively deeply buried beneath the regional seal, where it is difficult to differentiate 
hydrocarbon pore fill from porosity and other anomalous effects. In addition, it is 
difficult to identify and calibrate oil (as opposed to gas) from offset data (AVO), since 
this generally requires a high-quality 3D dataset and a relatively shallow (sub-seabed) 
simple target, such as that which exists in a typical Enfield area. Commonly the focus on 
amplitude supported prospects results in gas discoveries, or more commonly, the seismic 
quality is so degraded by seabed, shallow carbonates, reefal anomalies and/or complex 
structures that it is impossible to even properly image the target horizons. This poor 
imaging leaves open the possibility for significant oil volumes remaining in stratigraphic 
traps. 
 
{Figure Captions (22-28)} 
22. Historical summary (1953-2001) of exploration along the North West Shelf showing 
by year (A) West Texas Intermediate and US Wellhead prices by US$ in money of the 
day, (B) Proprietary and speculative 2D seismic activity by line kilometers, (C) 
Proprietary and speculative 3D seismic activity by square kilometers, (D) Exploration 
well drilling frequency divided into dry wells, wells with discovered volumes less than 
20mmboe and those with discovered volumes greater than 20mmboe, (E) Success rates 
for exploration drilling by both discoveries les than and greater than 20mmboe, (F) Total 
oil condensate and gas volumes (by boe) discovered per year, (G) Detailed display of 
total oil volumes found per year, (H) Average discovery size per successful exploration 
well by oil, condensate and gas (as boe) volumes, and (I) Average oil discovery volumes 
found per exploration well.  
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23. North West Shelf hydrocarbon discovery history curve by phase (mean success 
volume [MSV] for gas, condensate and oil) against exploration well count. 
 
24. North West Shelf hydrocarbon discovery history curve by geographic area against 
exploration well count.  
 
25. North West Shelf oil discovery history curve by geographic area against exploration 
well count.  
 
26. Historical (from 1965 to 2001) Woodside permit coverage, current limits of 3D 
seismic data and summary of estimated oil, condensate and gas reserves for the entire 
North West Shelf and its principal sub-basin areas. 
 
27. North West Shelf simplified map illustrating top porosity beneath the regional seal. 
 
28. Distribution of oil, condensate and gas reserves (mean success volumes – MSV) by 
stratigraphic level. 
 



Figure 22. Historical summary (1953-2001) of exploration along the North West Shelf.
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Figure 23. North West Shelf discovery history curve by phase (mean success volume [MSV] for gas, condensate and oil) against exploration well count.
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Figure 24. North West Shelf discovery history curve by geographic area against exploration well count. 
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Figure 25. North West Shelf oil discovery history curve by geographic area against exploration well count. 

500

0

U
nd

ev
el

op
ed

D
ev

el
op

ed

25
60

16
90

87
0

Ba
rro

w
 Is

la
nd

Le
ge

nd
re H
ild

a 
/ G

rif
fin

W
oo

ly
bu

tt

Ja
bi

ru H
ar

rie
t

C
ha

llis Sa
la

di
n

W
an

ae
a

C
os

sa
ck

R
ol

le
r

W
an

do
o

W
es

t D
ix

on
St

ag

La
m

in
ar

ia

C
or

al
lin

a 
/ H

er
m

es

H
in

gk
ip Vi
nc

en
t

En
fie

ld La
ve

rd
a

Au
da

ci
ou

s

Major New Oil Province Discovered

Vulcan

Barrow

Dampier

Exmouth

’The Early
Years’

’2D Seismic Oil’
’3D Seismic Oil’

’Big Gassy Fish
in a Barrel’

TIME  SCALE

19
53

-6
4

19
65

-6
9

19
70

-7
4

19
75

-7
9

19
80

-8
4

19
85

-8
9

19
90

-9
4

19
95

-9
9

20
00

-0
1

WELL COUNT

1-
17

18
-5

8

59-141 142-182 183-261 262-353 354-500 501-666 667-754

100 200 300 400 500 600 700

C
on

is
to

n

B
A

R
R

E
L

S
 O

F
 O

IL
 E

Q
U

IV
A

L
E

N
T

 (
B

O
E

)

Sahul/Flamingo/Nancar

3000

2500

2000

1500

1000



Northern Territory

Political (State) Boundary

0 100 200

kilometres

20° S

15° S

10° S

11
5°

 E

12
0°

 E

12
5°

 E

20° S

10° S

11
5°

 E

12
0°

 E

12
5°

 E

13
0°

 E

Darwin

Kupang

Broome

Exmouth

Karratha

Suai

Wyndham

Roti
Savu

Tim
orSumba

13
0°

 E

15° S

Figure 26. Historical (from 1965 to 2001) Woodside permit coverage, 3D seismic coverage and estimated reserves for North West Shelf and sub-basins.
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Figure 28. Distribution of oil, condensate and gas reserves (mean success volumes - MSV) by stratigraphic level.
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Regional Petroleum Systems 
 
The concept of a simple source-reservoir couplet “petroleum system” as defined by 
Magoon and Dow (1994) is not readily applicable to the North West Shelf since:  
•  There is no world class source rock present. Demaison and Huizinga (1994) and Spry 
(1993) both rate the major sub-basins along the margin as having a moderate “source 
potential index” as defined by Demaison and Huizinga (1994). 
 
•  Source rocks are generally of poor quality, and commonly occur at multiple 
stratigraphic levels. Products generated from different levels are usually geochemically 
similar, and co-mingle during migration (or in the reservoir), making the parent source 
units difficult to identify using conventional oil-source correlation methods; 
•  Many of the actual source units are difficult to identify, since some are undrilled, 
some contain source material dispersed over thick stratigraphic intervals, and others are 
developed within ephemeral facies which are rarely drilled and difficult to understand.  
 
Notwithstanding the above, the petroleum systems operating on the North West Shelf 
have been defined by Bradshaw et al. (1994) and Edwards et al. (1997) and the work 
presented here builds on this foundation. Figure 29 presents a simplified distribution map 
of the effective petroleum systems and the migration style after Demaison and Huizinga 
(1994). These charge areas are schematic only and their limits are poorly constrained. 
Individual areas are described in more detail below, but the figure clearly demonstrates 
that many parts of the margin do not contain an effective charge system. In some areas 
this may be due to an insufficient sample population, but in other areas we believe this 
lack of effective charge is due to absence of an effective source rock, rather than issues 
such as seal, timing, maturity etc. The corollary to this, is that background organic 
material does not provide a ubiquitous effective charge (not even dry gas), and the fact 
that an area may be adjacent to kilometres of mature, shaley sediments, does not 
necessarily mitigate the charge risk. 
 
Neogene reactivation of the North West Shelf has historically focussed attention on trap 
breach as a major reason for many exploration well failures (O’Brien et al., 2002). 
Although undoubtedly a major risk in some areas (e.g. the Londonderry Terrace – Figure 
2 and Brincat et al., 2001) this focus has tended to mask the importance of the underlying 
source risk. Trap risk is the primary suspect in many failed trap analyses because of the 
obsessive focus of exploration companies on seismic prospect mapping. There is always 
plenty of seismic data to purchase, analyse, reprocess and discuss, and a plausible 
mechanism for structural failure can generally be supplied. Conveniently, the structural 
failure hypothesis always preserves the supposed prospectivity of the area, and focus 
quickly moves to the adjacent prospect. In contrast, the presence of an effective source 
system is significantly more difficult to evaluate and understand. Prediction of maturity 
and migration issues can usually be evaluated by well control, seismic mapping, thermal 
and burial history modelling, but the key element which is always difficult to quantify is 
source quality and effectiveness. The intrinsically intangible nature of the source 
effectiveness risk element, and the blighting of entire areas once the absence of an 
effective source is established, has tended to popularise the trap breach myth. The 
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conclusion of absence of source assumes enough wells have been drilled and evaluated to 
make this damning assessment.  
 
In an attempt to better understand the source rock systems, Woodside has compiled, 
quality controlled and evaluated a comprehensive set of source rock data, based on core, 
sidewall core and cuttings samples from the North West Shelf, consisting of almost 
30,000 records. The Woodside database was supplemented from a fusion of Geoscience 
Australias ORGCHEM database and a Mesozoic Source Rocks database (Dolan and 
Associates et al., 2000).     Histograms of Total Organic Carbon (TOC) and Hydrogen 
Index (HI) are displayed as Figures 30 and 31 respectively. Although somewhat 
simplistic, these demonstrate that whereas most sediments contain sufficiently high TOC 
to be considered as source rocks, the proportion of liquids-prone samples is very small, 
and that most sediments are probably only capable of generating gas. This is consistent 
with the dominance of gas over oil (92% of reserves are gas or condensate by boe – see 
Figure 26) within existing discoveries. 
 
Identifying oil-prone source intervals from this data set is a key issue. Scott (1992) in his 
discussion of North West Shelf petroleum systems, noted the difficulty of characterising 
marginal source rocks with mixed marine-terrestrial kerogens, and suggested that Rock-
Eval data underestimates their oil potential. He proposed the use of pyrolysis-gas 
chromatography (Py-GC) to complement source rock screening, by evaluating the 
distribution of gas and oil products in pyrolysates. We concur with Scott (1992) in 
finding no correlation between Rock-Eval Hydrogen Index and the Pyrolysis-GC derived 
parameter gas-oil generation index (GOGI; Figure 32). There is also no support for the 
GOGI versus HI correlation published by Pepper and Corvi (1995). This lack of 
correlation persists, regardless of how the data are filtered. Mineral matrix effects related 
to low TOC are not considered a root cause. This has important implications for the way 
Rock-Eval data are used in identifying and modelling source rock behaviour in marginal 
source rock provinces, as it implies that Hydrogen Index may not be sufficiently 
indicative of source quality. 
 
With this caveat in mind, and in the absence of any more rigorous method of evaluating 
source potential, we attempted to map out the relative liquids potential of different source 
sequences, using a statistical comparison of source rock quality at each stratigraphic 
level. The details of this analysis remains confidential, but the simplified results are 
shown as Figure 33, showing source quality in different areas divided into a simple four 
(4) class relative scheme namely gas-prone, minor, fair and good liquid potential. No 
attempt was made to correct for sediment maturity, and it must be pointed out that even 
the “good” source rock successions would probably only be classified as fair by global 
standards. 
 
When integrated with other geological and exploration data, the source rock screening 
data reveal that; 
•  Oil-prone source rocks occur at multiple levels in the Dampier, Vulcan and Sahul-
Flamingo-Nancar  areas (Figure 2), consistent with the occurrence of oil fields in these 
regions:  
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•  Source rocks are not identified in the Barrow and Exmouth sub-basins (Figure 2), yet 
these areas contain numerous oil accumulations. This is interpreted to be due to a 
combination of under-sampling, and burial of J40 marine source beds beneath the thick 
K10 Barrow delta (Figure 18); 
•  The Beagle and Browse basins contain no identified liquids-prone source rock 
sequences, consistent with the very small volumes of oil discovered to date in these 
regions; 
•  The TR20-TR10 (Triassic) section appears to have little or no oil potential across the 
margin, though distal marine facies are not yet well sampled; 
•  There is some oil potential within the delta top sediments within the J10/J20/J30 
sections particularly in the Dampier, Vulcan and Sahul-Flamingo-Nancar areas; 
•  Significant oil-prone source rocks are developed within the J40 section in the marine 
rift basins particularly within the Dampier and Vulcan regions; 
•  There is significant oil-prone potential within the condensed K10-K40 shale intervals 
in the Vulcan and Sahul-Flamingo-Nancar areas (Figure 19). 
 
The observations above are consistent with the reservoir distribution of oil and gas, 
which, assuming upward migration of hydrocarbons, indicates that the primary oil source 
rock is at J30 or younger levels, and that major gas source rocks must be within TR20 or 
younger sediments (Figure 33). 
 
The burial, maturation and migration of hydrocarbons from identified source rock 
successions is commonly evaluated using computer-based models, which are well beyond 
the scope of this regional synopsis. At a higher level, there are some general observations 
that can be made about the maturity and migration process along the margin. The present 
day maturity of the main Early Cretaceous-Triassic source rock units (Figure 33) is 
approximated by the present-day regional JO (Oxfordian) maturity map (Figure 34). The 
primary driver is the Tertiary prograding wedge (Figure 21), which attains thicknesses of 
up to 4 kms in some basinal areas. Late burial means that most kitchen areas are currently 
at maximum burial depths, and that there is no structuration-migration timing problem for 
most trap types; the only exception being some very late traps formed (not reactivated) by 
late Neogene tectonism. The areas which have not experienced this late burial, and rely 
on earlier burial phases for charge, include the outboard deepwater areas and inboard 
Palaeozoic areas such as the Petrel Sub-basin.  
 
Portions of the WASB which are currently mature for gas are the central basinal areas 
within the Barrow-Dampier, Caswell and Malita Sub-basins (Figures 2 and 34). Burial 
history in these areas has resulted in the main source units (Figure 33) passing through 
the oil window in the Late Cretaceous in response to thick Cretaceous sedimentation 
(Figures 19 and 20). Subsequent Tertiary burial has pushed basinal source units into the 
gas window, and those on the flank (if present) into the oil window (Figure 34). The most 
complex area for maturation is the Exmouth sub-basin, where relatively thin Tertiary 
cover (Figure 21) overlies a thin Late Cretaceous and thick Early Cretaceous (K10; 
Barrow delta) section resulting in a complex multi-phase charge story (Tindale et al., 
1998).  
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Figures 18 to 21 highlight the progressive outboard (northwesterly) migration of 
depocentres from the Oxfordian (Figures 18 to 21) to the present day.  The primary 
reason why most deepwater portions of the margin are generally gas-prone is because 
they lack Late Jurassic synrift source rocks and that the migration of depocentres 
outboard has also tended to focus charge from the Late Jurassic depocentres in an inboard 
(southeasterly) direction. 
 
It may be stated that all of the major oil and gas discoveries along the North West Shelf 
access source kitchen areas currently at maximum depths of burial due to Tertiary 
progradation. Local migration can be complex, particularly beneath the key diachronous 
base regional seal (Figure 27). Relatively unstructured basinal areas with thick 
Cretaceous shale development (Barrow/Dampier, Caswell and Malita sub-basins) are 
areas of laterally-drained high-impedence migration (sensu Demaison and Huizinga, 
1994) at the base regional seal level. Consequently, lateral migration dominates, and oil 
generated during Cretaceous burial is flushed by gas, unless protected by an underlying 
shale aquaclude (e.g. at the base of the J20 section, Lambert 2 oil and gas discovery, 
Kingsley et al., 1998). Such a gas flushing versus overpressured (and thus effective) seal 
relationship was noted for the Barrow-Exmouth area by Zaunbrecher (1994).   
 
All basinal areas are flanked by shelfal and platform areas, where Cretaceous sealing 
units become thinner and/or faulting becomes more pervasive. In these areas, a lower-
impedence fault-related vertically-drained migration character dominates. In these lower 
impedance areas, particularly those affected by pervasive Neogene tectonism, such as the 
Vulcan Sub-basin, migration routes between source and trap are short, risk of fault breach 
is significantly higher, and risk of gas-flushing is significantly lower than in basinal high 
impedance areas. Some portions of the North West Shelf (e.g. the central Barrow Sub-
basin and parts of the Vulcan Sub-basin) display both high and low impedance character 
respectively for oil and gas, thus enriching some traps with oil. This makes phase 
prediction problematical, as the phenomenon appears to be local, and gas pools (with 
flushed oil), and oil pools (with leaked gas) can occur adjacent to each other. Leakage 
explains the common occurrence of gas within the K40 radiolarite section, which is 
visible as bright amplitudes over some fields in the Barrow sub-basin, and the common 
development of HRDZ seismic anomalies along the margin (Cowley and O'Brien, 2000).  
 
Apart from gas-flushing and the selective leakage of gas up faults, there are two 
processes which affect in situ reservoired hydrocarbons, and the resultant hydrocarbon 
phase. These are:- 
 
•  Degradation of a light oil into heavy oil and dry gas via biodegradation (e.g. Vincent - 
Enfield area, Figure 3) as evidenced by the association of a dry gas cap with a 
biodegraded oil. 
•  Water-washing, acting upon a mixed oil and gas charge to produce a light oil, as 
proposed by Newell (1999) for the Laminaria area. 
 
The former will only occur at low temperatures (below 70 to 80

o
C), and biodegradation 

risk can readily be assessed. Water washing resulting in enhancement of oil charge is 
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poorly understood, however, it may be unrecognised elsewhere along the margin, or may 
be limited to the Laminaria area, and related to the establishment of an aquifer system by 
the recent (3 Ma) formation of the Timor Trough. The presence of a tilted gas-water 
contact in the Sunrise Field (Seggie et al., 2000) attests to the presence of this local 
aquifer system, and we favour a local phenomenon. 
 
In summary, it appears that a gassy charge can be enriched in liquids via selective 
dynamic gas leakage and/or water washing, and an oily charge can be destroyed by gas 
flushing and/or biodegradation.  The factors which affect the presence and phase of 
reservoired hydrocarbons along the North West Shelf are therefore complex, and go 
significantly beyond the traditional depth, pressure, temperature, source quality, maturity, 
migration and trap risk factors typically considered by explorationists.  
 
Four source rock models have been identified; the first two illustrated in Figure 35 are 
favoured for the development of effective liquids-prone source rocks within the North 
West Shelf. Model A (Figure 35A) comprises marine shale deposited under suboxic to 
anoxic conditions, within an underfilled rift basin (Scott, 1994) and is the “traditional” 
depositional model used to explain the liquids along the margin. In this model it is 
proposed that organic matter was concentrated in thin source rock intervals during 
periods of sediment starvation and restricted circulation, possibly during periods of 
maximum flood, resulting in enhanced preservation potential. This model best describes 
the J40 (Kimmeridgian) source rocks observed in the centre of the Dampier sub-basin, 
and presumed to extend southwestwards along the axis of the Barrow and Exmouth sub-
basins (Figure 14), and also the J40 (Oxfordian) source rocks observed in the Paqualin 
Graben (Vulcan Sub-basin) to the northeast. 
 
The second model (Figure 35B) of oil-prone source rock development is seen in the 
underlying J20/J30 clastic section and is poorly understood. The observations concerning 
this source system are: 
•  Certain wells show enriched source rock intervals occurring within delta top coals or 
in proximal marine shales whereas in wells immediately along strike these sequences do 
not show the same enrichment. That is, source rock development is laterally 
discontinuous. 
•  Though the source potential is spacially erratic, where identified it tends to be 
repeated within stacked parasequences suggesting the enrichment mechanism is repeated 
in the same location and thus is probably structurally controlled 
•  Both the marine shale and delta-top coals are within strongly interbedded sequences 
associated within facies either side of the delta front suggesting the source rocks were 
deposited within a deltafront area where frequent, widespread marine floods occurred. 
 
The “delta front enrichment” source rock models are shown in Figure 35. The models 
proposed both rely on “ponding” due to subsidence over an underlying low (sedimentary 
thick area) near the delta front. In the delta top case frequent marine incursions have been 
shown to considerably increase the oil source potential of coals (Sykes, 2001) and thick 
coal developments have been linked to highstand deposits as described for the Tertiary 
coals of Australia by Holdgate and Clarke (2000). Clearly structural embayments and/or 
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structural depressions in areas behind coastal barrier systems would be favoured 
environments in this model. The underlying structural control on these depressions thus 
explains why the enrichment is both localised and repeated in stacked sequences. A 
similar model is also proposed in the shallow offshore bar environment beyond the coast 
where ponding occurs behind an offshore bar system and the shallow marine anoxia is 
maybe caused by the establishment of a freshwater wedge from hinterland run-off (Figure 
35C). High resolution palaeogeographic maps highlighting ancient river systems is then a 
key for source rock prediction in these models.  
 
A fourth unproven model for liquids could be hydrocarbons sourced from deep water 
marls rather than marine shales with a significant higher plant input as found in the 
inboard failed rifts  (Bradshaw, 2001; Summons et al., 1998). There is some geochemical 
evidence to suggest that the oils sourced from Mesozoic carbonate facies seen in Seram, 
Buton, Buru and Timor may also extend to the outer Bonaparte and Browse basins 
(Edwards et al., 2001) and to the Carnarvon Basin (George et al., 1998). This petroleum 
system is developed out beyond the typical Late Jurassic Westralian system (Bradshaw et 
al., 1994) of the North West Shelf.   
 
The starting point for Woodside’s regional interpretation of fluid geochemistry was the 
“Oils of Western Australia” study by AGSO/Geomark (1996). This systematic review of 
160+ oils and condensates emphasised the primary tectonic control on source rock 
depositional environment. Subsequent publications by the same group have extended the 
classification scheme (e.g. Summons et al., 1998).  For this review we incorporated more 
recent published material into the AGSO/Geomark framework, and commissioned new 
analyses of aromatic hydrocarbons and compound specific isotopes for all fluids in the 
Woodside collection.  
 
The new analyses help to identify differences due to maturity and secondary alteration 
from those fundamentally related to source. Until recently, very little published 
geochemical data was available for gases. Recent reports (AGSO/Geotech 2000; 
Boreham et al. 2001; Crostella and Boreham, 2000; Pallaser, 2000) have greatly 
improved matters but there is still a paucity of carbon isotope data for individual gas 
components. Such data are essential to gas typing and maturity estimation and in 
particular, to recognising mixtures of thermogenic and biogenic gas. 
 
{Figure Captions (29-35)} 
29. Simplified petroleum systems map of the North West Shelf. 
 
30. Histogram and cumulative probability distribution summary of observed Total 
Organic Carbon (TOC) measurements from Rock-Eval data from the North West Shelf. 
 
31. Histogram and cumulative probability distribution summary of observed Hydrogen 
Index (HI) measurements from Rock-Eval data from the North West Shelf. 
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32. Comparison between Hydrogen Index (HI) measurements from Rock-Eval data and 
Pyrolysis-gas Chromatography measurements for source rock samples from the North 
West Shelf.  
 
33. Summary of observed Rock-Eval source rock screening results with interpreted 
effective oil and gas source rock units by area and stratigraphic age for the North West 
Shelf. 
 
34. Regional interpreted current day maturity at the JO (Oxfordian) surface over the 
North West Shelf. 
 
35. Summary of source rock depositional models for the North West Shelf. (A) 
Underfilled marine rift basin (after Scott, 1994); (B) Prograding delta model: (C) Shallow 
offshore ponding model: (D) Delta plain ponding model. 
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Figure 29. Simplified petroleum systems map of the North West Shelf.
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Figure 30. Histogram and cumulative probability distribution of Total Organic Carbon (TOC) (from Rock-Eval data), North West Shelf.



Figure 31. Histogram and cumulative probability distribution of Hydrogen Index (HI) (from Rock-Eval data), North West Shelf.



Figure 32. Hydrogen Index (HI) (from Rock-Eval data) versus Pyrolysis-gas Chromatography measurements, North West Shelf. 



Figure 33. Summary of Rock-Eval screening results, with interpreted source rock unit, by area and age for the North West Shelf.
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Figure 34. Regional interpreted current day maturity at the JO (Oxfordian) surface over the North West Shelf.
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Figure 35. Summary of source rock depositional models for the North West Shelf. (A) after Scott (1994). 
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Petroleum Geology of the Main Productive Areas 
 
The petroleum geology of the various sub-basins and areas along the North West Shelf is 
described below. 
 
At the end of 2001 the North West Shelf contained some 233 field discoveries and  754 
exploration wells indicating an historical technical success rate of 32% and a 12% 
historical success rate for fields greater than 20 mmboe. The margin is estimated to 
contain (scope) reserves of 152 Tcf of gas, 2603 mmbbls of condensate and 2557 mmbls 
of oil which equates to a 8%/8%/84% oil/condensate/gas volume split respectively by 
boe. Of these discovered estimated (scope) reserves at the end of 2001 some 866 mmbbls 
of oil, 371 mmbbls of condensate and some 119 Tcf of gas remains undeveloped.  
 
Exmouth Plateau (Figures 2, 3, 20, 29) 
 
The Exmouth Plateau at the end of 2001 contained 11 discoveries and 23 exploration 
wells with a historical technical success rate of 74% and a 35% historical success rate for 
fields greater than 20mmboe. The plateau is estimated to contain (scope) reserves of 32 
Tcf of gas, 81 mmbbls of condensate and no oil which which equates to a 1%/99% 
condensate/gas volume split respectively by boe. None of these reserves have yet been 
developed. 
 
The petroleum geology and early exploration history of the Exmouth Plateau is described 
by Barber (1988). The Exmouth Plateau contains a number of large Cretaceous (K10) dry 
gas accumulations including Scarborough, and Jansz/Io (reservoired in J40 fan sands - 
see Bussel et al., 2001) and a number of large Triassic (TR20) dry gas accumulations 
such as Orthrus and Maenad inboard (Figures 2 and 29) plus smaller gas pools intersected 
in Jupiter, Sirius and Eendracht (Figure 3).  All these accumulations have the majority of 
their reserves reservoired at the base regional seal level. The sandiness of the stratigraphy 
beneath this level generally precludes significant intra-Triassic (TR20 and TR10) 
accumulations, and enables effective vertical migration to regional top porosity level. 
Evidence of trap breach is present on seismic data, explaining why some traps (e.g. 
Jupiter) are underfilled. TR20 and younger sequences are immature, and the dry gas is 
consequently interpreted to have been sourced from TR10 delta top sediments, as 
penetrated by Jupiter 1. Gas in the large Scarborough field (4 TCF) (Longley et al., 2002; 
Bradshaw et al., 1998) is both extremely dry (C1/(C1-C4 = 0.998) and low in CO2 (trace). 
This composition and the relatively shallow/cool reservoir suggest a biogenic origin, 
however, the methane isotope value of minus 42.3 (Crostella and Boreham, 2000) is more 
consistent with a thermogenic source. Furthermore, biodegraded gases at Sirius and 
Eendracht are at least partly thermogenic (James and Burns, 1984), and consistent with a 
Middle Triassic (TR10) coaly source. Assuming that the composition and carbon isotope 
values of Scarborough gas are both valid, it could be an end-stage anaerobic 
biodegradation product of an initially dry, thermogenic gas. In the absence of isotope data 
for the CO2, an early thermal origin is also possible. 
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The Exmouth Plateau was strongly affected by Campanian structuring (Bradshaw et al., 
1998) and the largest inversion structure is Scarborough, which is still at the bathymetric 
crest of the plateau (Figure 3). Significant Tertiary burial occurs inboard of this area 
(Figure 20), and TR10 in the (uninverted) synclinal area is interpreted to be at maximum 
depth of burial, and still supplying gas to reservoirs at the base regional seal level. 
 
Dampier, Barrow and Exmouth sub-basins (Figures 7, 14, 33, 34) 
 
The principal effective oil source rocks in the Dampier, Barrow and Exmouth sub-basins 
are J40 synrift anoxic marine shales (Figures 14 and 33) which are currently within the 
oil window on the basin margins and within the gas window in basinal areas (Figure 34). 
Other source rocks appear to be effective within both the J20 deltaic sequence and the 
basal J10 section (Figure 7), although the relative, albeit probably minor, contribution of 
liquids from these levels is poorly understood. The principal gas source rock levels are 
deltaic sediments within the J20 (Legendre), J10 (Brigadier) and TR20 (Mungaroo) 
sections, although as for the oil, the exact level of contribution from each of these units is 
still unclear. 
 

Dampier Sub-basin (Figures 2, 6, 7) 
 
The Dampier Sub-basin is described by Woodside (1988) and Jablonski (1997). At the 
end of 2001 it contained 49 field discoveries and  120 exploration wells, with a historical 
technical success rate of 41% and a 22% historical success rate for fields greater than 20 
mmboe. The sub-basin is estimated to contain (scope) reserves of 34 Tcf of gas, 1037 
mmbbls of condensate and 633 mmbls of oil which equates to a 8%/14%/78% 
oil/condensate/gas volume split respectively by boe. Of these discovered estimated 
(scope) reserves at the end of 2001 an estimated 440 mmbbls of oil, 418 mmbbls of 
condensate and some 15Tcf of gas remain undeveloped.  
 
The Dampier Sub-basin can be divided broadly into two structured flanks, either side of 
the main Oxfordian depocentre (Figures 2 and 6). Fields along the western flank include 
the large rift-related horst block traps, such as the Goodwyn (Young, 1998), North 
Rankin (Vincent and Tilbury, 1988) and Echo-Yodel wet gas fields, the single, unique, 
Perseus lowside saddle trap (Taylor et al., 1998), and numerous other smaller horst and 
tilted fault block traps such as Eaglehawk (Vincent and Tilbury, 1988), and the Searipple 
field beneath Perseus (Taylor et al., 1998). Subcrop of different J10 and TR20 sands 
within many traps at the level of the base regional seal produce complex fields containing 
various hydrocarbon phases (oil only, oil and dry gas, and wet gas) and stacked pools 
with different fluid contacts (Longley,et.al., 2002). Indeed, some individual pools contain 
sands in pressure communication and sharing a common contact, which produce gas with 
markedly different condensate-gas-ratios (CGRs). The central basin area has 
hydrocarbons within J50 low relief oil-filled drape traps which overlie deeper rift-related 
gas-filled J10 horst traps. Wanaea and  Cossack (di Toro, 1994), Lambert (Kingsley et 
al., 1998) and Mutineer and Egret (Vincent and Tilbury, 1988) typify these traps. The 
exception is the J50 Angel Field (Vincent and Tilbury, 1988) which contains wet gas. 
The eastern flank contains the lowside roll-over K10 Legendre field (Willetts et al., 
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1999), the faulted horst K10 Talisman field (Ellis, 1988), the J20 Reindeer faulted 
anticline gas field (Ballesteros, 1998) and the Wandoo oilfield (Delfos, 1994) and Stag 
(Crowley and Collins, 1996) K20 drape anticlines (note Stag is a combination drape and 
onlap trap see field map in Clare and Cowley, 2001), plus numerous smaller 
accumulations. All of these eastern flank fields are at the level of the base regional seal 
except for Reindeer, which is reservoired beneath a thick J20/J30 shale unit. 
 
The accumulation of significant volumes of hydrocarbons at multiple stratigraphic levels 
along both flanks and within the main basinal area demonstrates the laterally drained 
high-impedance nature of the petroleum system within the central Dampier Sub-basin. 
 
In the Dampier Sub-Basin the complex charge history is reflected in the recognition of 
five distinct fluid families (AGSO/Geomark, 1996). Oil accumulations such as Wanaea, 
Cossack, Legendre, Lambert and Mutineer are reasonably well typed to Upper Jurassic 
(J40) sediments in the Lewis and Kendrew troughs, as are the biodegraded oils at 
Wandoo and Stag (Summons et al.,1998). These fields are shielded from J20, J10 and 
TR20 gas charge by a thick J30 (Calypso Formation) shale, and a thick basal J20 shale 
(Athol Formation) (Figure 6). Angel Field gases are isotopically distinct from others in 
the province, consistent with breach of the J30 seal, allowing mixing of Middle and Late 
Jurassic systems. On the Rankin Platform, gas-condensates overlie either oil rims or 
biodegraded oil residues, and show variable CGRs. The oil rims invariably abut the main 
bounding fault and the wettest gases occur in reservoirs which do not physically contact 
the main basinal bounding fault. This suggests the fluids may be a mixture of vertically 
migrated upper Jurassic J40 oil, and drier gas from deeper units (?J40-TR20 Undiff) 
within the Kendrew Trough, with the wetter gas possibly being generated locally within 
the Rankin Platform area from J10-TR20 source intervals. This is the simplest 
explanation for the variable character of the fluids encountered on the Rankin Platform. 
In support of the vertical migration model, data from recent wells show evidence for 
formation of at least some of the gas-condensates via dysmigration of an initially waxy 
oil. Furthermore, condensates on the Rankin Platform bear more geochemical affinity to 
Jurassic source rocks (J40, J20) than they do to the Triassic (Mungaroo Formation TR 
20) coals often assumed to be their source (Figure 2).  Thus, the relative volumetric 
contribution from Jurassic and Triassic sediments remains unclear. Until resolved, such 
uncertainties call into question the use of the Rankin Platform as an analog for Triassic 
gas plays elsewhere in the WASB.  
 
Most oils in the Dampier Sub-Basin are sourced from marine or marine-deltaic sediments 
such as those in the Late Jurassic of the Kendrew and Lewis Troughs (J40, Kimmeridgian 
and Oxfordian). The oils at Eaglehawk 1, Egret 1 and some of the North Rankin 
condensates, however, show evidence for a source containing a higher proportion of land-
plant matter. In the case of Egret, the oil in question is a biodegraded phase which has 
been overprinted by a fresh charge of oil of the same type as Lambert, Wanaea, etc. (i.e., 
Late Jurassic, J40 origin). Identification of the source of the first charge at Egret and 
Eaglehawk awaits a detailed charge/migration model but it may be significant that a rich, 
marginal marine lagoonal source rock occurs in the Rhaetean portion of the J10 sequence 
(Figure 7) at Egret 1. As many condensate-rich gases occur in early Jurassic reservoirs, it 
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is possible that this source also contributes to the liquids charge in other parts of the 
Rankin Platform, however, there are alternative explanations for the higher CGR gases.  
The simplest of these is retention of liquid components in the gas phase in the more 
highly pressured traps (as opposed to the formation of discrete oil-rims). Again, 
integration of the fluid property data with a high resolution charge/migration model is 
needed to resolve such issues. 
 
The imprint of an early, biodegraded oil charge to the Rankin Platform is evident in the 
prevalence of 25-norhopanes in oils trapped in Triassic reservoirs. Although this feature 
has long been recognised (Volkman et al., 1983) the implications for fluid source 
correlation have not always been considered. Biomarker compounds traditionally used 
for fluid-source correlation are initially enriched in biodegraded oils and unless 
degradation has proceeded to the point where they are completely removed, they will mix 
with and alter the biomarker signature of any subsequently emplaced fluid. This is 
especially so if the second phase is a gas-condensate, as occurs at several places on the 
Rankin Platform (e.g. Dockrell and Rankin fields).  Because of this, and the lack of gas-
isotope data, the origin of some large gas accumulations in the Carnarvon Basin remains 
uncertain, with Triassic, Middle and Late Jurassic sediments all potentially contributing. 
 

Barrow Sub-basin (Figures 2, 7, 11, 12, 16, 18, 27, 33) 
 
The Barrow Sub-basin is described by Parry and Smith (1988) and Baillie and Jacobson 
(1997). The Barrow Sub-basin at the end of 2001 contained 77 field discoveries and 202 
exploration wells with a historical technical success rate of 38% and a 8% historical 
success rate for fields greater than 20 mmboe. The sub-basin is estimated to contain 
(scope) reserves of 21 Tcf of gas, 113 mmbbls of condensate and 913 mmbls of oil which 
equates to a 20%/2%/78% oil/condensate/gas volume split respectively by boe. Of these 
discovered estimated (scope) reserves at the end of 2001 some 266 mmbbls of oil, 61 
mmbbls of condensate and some 19.5 Tcf of gas remains undeveloped.  
 
The Barrow Sub-basin, like the Dampier, can be divided into a western and eastern flank 
surrounding a central deep. The outboard northern end of the western flank (Figure 2), 
along the Gorgon platform, contains large dry TR10 and TR20 gas fields such as Gorgon, 
West Tryal Rocks (McClure et al., 1988), Chrysaor, Dionysus, Geryon (Sibley et al., 
1999), and Iago. All of these contain gas within simple horst traps at the base regional 
seal level. As for the Rankin Platform traps to the north, these fields have 
intraformational Triassic seals subcropping the base regional seal resulting in numerous 
pools with different fluid contacts (Sibley et al., 1999). The southern end of the western 
flank (Alpha Arch) contains K20 oil accumulations such as Griffin and Scindian/Chinook 
(Tindale et al., 1998). The basinal area contains deeper K20 horst block traps such as 
Spar (McClure et al., 1988), but also the amplitude supported K20 East Spar anticlinal 
trap (Craig et al., 1997), the K20 Woollybutt oil field (Hearty and Battrick, 2002) and the 
K20 John Brookes gas field (Auld et al., 2002) and the recognition of the latter three 
structures are heavily dependent on depth conversion techniques. Also present in this 
basinal area is the Maitland amplitude-supported dry gas field (Sit et al., 1994), the only 
significant Tertiary (T10) discovery (Figure 7) along the North West Shelf. The eastern 
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flank accumulations include the margin’s largest oilfield, Barrow Island (Ellis et al., 
1999), which has a topographic (island) expression and multiple oil and gas zones within 
K40-J20 intervals, the tilted fault block and lowside traps of the South Pepper, Chervil 
and Saladin areas (McClure et al., 1988), which are tilted fault blocks at the level of the 
base regional seal located along a broad Campanian to Miocene inversion anticlinal 
trend. To the northeast of Barrow Island, beyond the progradational limit of the Barrow 
delta (Figure 16) are the Harriet area fields surrounding the Lowendal Syncline (Figure 2) 
which include the tilted fault block traps of Harriet (Howell, 1988), Bambra and 
Campbell (McClure et al., 1988), Gypsy-Rose-Lee (Apache, 2002), Wonnich 
(Ballesteros, 1998), and many other smaller accumulations which contain hydrocarbons 
mainly at the K20 base regional seal level within basinal fan sands deposited off the front 
of the Barrow delta and forming the local base regional seal level (Baillie and Jacobson, 
1997). Also in this area are key deeper accumulations within J40 onlap traps (Linda) and 
complex J10-TR20 highside and lowside fault block traps (Gypsy-Rose-Lee). 
 
The lack of observed source potential in Barrow and Exmouth sub-basins from the 
Woodside source screening work (Figure 33) is interpreted to be due to burial of the main 
J40 source sequence beneath thick K10 Barrow sequence of deltaic sediments (Figure 
18), with the result that it is rarely drilled, and often overmature where penetrated. 
 
Volkman et al. (1983) correlated some Barrow Sub-Basin oils to the Late Jurassic Dingo 
claystone (J50/J40). A more specific assignment was made on the basis of aromatic 
biomarkers by van Aarssen et al. (1996), who observed that most oils correlated best with 
the W. spectabilis biozone (J40 Oxfordian). While a Late Jurassic origin of most of the 
oils is likely, there is evidence for contribution from other source rocks at some locations. 
For example, a calcareous source component is suggested by biomarker profiles of North 
Herald and Chervil oils, and for an early oil phase seen in inclusions at South Pepper 
(Summons et al., 1998; George et al., 1998). Some condensates from the West Tryal 
Rocks area have an unusual isotope composition suggesting mixed origins 
(AGSO/Geomark, 1996) and an oil recovered from Callovian sands at Bambra 1 shows a 
close correlation with the encasing shales (J30 R. aemula age).  
 
Gases of the Gorgon area, especially those in reservoirs associated with deep, high angle 
faults, are higher in CO2 and much lower in liquids content than analogous fields of the 
Rankin Platform. This is in part due to the deeper burial of  source units within the 
adjacent basinal area, but also due to flushing of earlier (wetter) gases via a spill chain 
passing from Gorgon (south to central to north) to Chrysaor, Dionysus and Geryon, with 
a  late dry, CO2 rich charge. It is possible that the J20 section may be responsible for 
much of the liquids content in the Dampier gas fields (as is the case at Angel) and since 
the J20 delta top sediments were limited to the Dampier area and did not extend into the 
Barrow rift (Figures 11 and 12) the initial charge into the flanking Gorgon area traps may 
have been relatively dry gas. In addition, the amount of erosion at the base regional seal 
level is greater in the Gorgon area and little or no delta top sediments within the  J10 or 
J20 units remain to provide a wet gas charge as they may do in the Rankin Platform area. 
Condensates in the Gorgon Platform fields are highly aromatic, and both saturated and 
aromatic biomarkers show evidence of mixing (AGSO/Geomark, 1996; AGSO/Geotech, 
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2000; van Aarssen et al., 2000). It is therefore considered likely that the liquids and gas 
components of the Gorgon gases are decoupled with respect to source and maturity, and 
in fact the liquids may be the result of gas stripping of mature coal organic matter in the 
reservoir and/or along the migration pathway. Such considerations reduce the relevance 
of biomarker information in assigning a source for the gas. Furthermore, in the absence of 
information on kerogen isotopes it is not possible to deconvolute source and maturity 
influences on the gas isotope signature. As noted in the AGSO/Geotech study, however, 
uniformity in the isotope composition of wet gas components argues for a common 
source for most Carnarvon Basin gases, including those of the Gorgon complex. Since 
Jurassic sediments are downthrown to great depth by the faults forming the Gorgon 
fields, a Triassic source is not necessary to explain a dry gas charge here.  
 
Gases in the Barrow Sub-Basin often appear to contain a component of biogenic methane 
(AGSO/Geotech, 2000). This is apparent from the isotope signature wherein methane is 
isotopically anomalously light, relative to ethane in the same accumulation.  In cases 
where biogenic methane occurs with biodegraded oils it is probably of secondary 
biogenic origin, i.e. formed as a by-product of anaerobic degradation of oil and gas 
(Pallaser, 2000; Boreham et al., 2001). A strong association of �13C depleted methane 
(product) with �13C enriched CO2 (substrate) lends weight to this theory. The methane 
may also be partly of early thermogenic origin, however, and derived from the 
Cretaceous seal rock (Muderong Shale).  
 
The deep basinal areas of the Barrow Sub-basin adjacent to the Gorgon and Alpha arches 
(Figure 2) has a thick Cretaceous shale section with the base regional seal at the TR20 
stratigraphic level (Figure 27) and this shale pile is overpressured due to disequilibrium 
compaction (Tingate et al., 2001). Southwards and eastwards from this shale depocenter 
the Cretaceous section becomes more interbedded with deltaic and fan sands of J20-K10 
age and overpressure and gas flushing is less dominant and mixed oil and gas pools exist 
at the level of the base regional seal. A string of fields along the western flank of the 
basin has deeper gas at J30 and J20 levels with mixed oil and gas at the main K10-K20 
base regional seal reservoir levels (Zaunbrecher, 1994). This suggests that deeper gas is 
accessing basinal Jurassic J40 gas mature source rocks and or gas is leaking through the 
aquiclude J40-J50 shale pile from deeper ?J10-Tr20 units. Regardless of the source of 
this mixed oil and gas at the base regional seal level selective dynamic leakage of the gas 
from this level results in close proximity of oil and gas pools and local selective 
enrichment of oil in some fields. In the south, medium range migration at the base 
regional seal level fills small pools along a spill chain all the way to the shallow onshore 
and biodegraded K20 Turbridgi gas field.  
 

Exmouth Sub-basin (Figure 29) 
 
The Exmouth Sub-basin is described by Tindale et al. (1998). At the end of 2001 the area 
contained 16 field discoveries and 74 exploration wells with a historical technical success 
rate of 22% and a 8% historical success rate for fields greater than 20 mmboe. The sub-
basin is estimated to contain (scope) reserves of 1.2 Tcf of gas, 0 mmbbls of condensate 
and 278 mmbls of oil which equates to a 58%/42% oil/gas volume split respectively by 
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boe. None of these discovered estimated (scope) reserves at the end of 2001 had been 
developed.  
 
The Exmouth Sub-basin only has significant hydrocarbon accumulations on it’s eastern 
flank, due to strong tilting down to the northwest. The main accumulations include the 
K10 Macedon/Pyrenees faulted anticline dry gas field (probably produced from 
biodegradation of oil and initially wet gas), numerous K10 tilted fault blocks such as 
Novara, Outtrim, Blencathra, Caretta, Vincent and Leatherback (Tindale et al., 1998), the 
J50 amplitude supported lowside fault block traps at Enfield and Laverda (Bussell et al., 
2001) and the onshore minor oil accumulation at Rough Range (Ellis and Jonasson, 2002) 
(Figure 29).  
 
All of the Vinceint, Enfield and Laverda fluids are heavily biodegraded (both oil and 
gas), and would be unproduceable were it not for (a) the excellent reservoir quality in the 
K20 and J50 and (b) the fact that the oils were light to begin with and therefore contained 
low concentrations of the polar and asphaltenic materials responsible for high viscosity in 
biodegraded oils. Oil-source correlation is hampered by the heavy bio-degradation, but a 
combination of analytical techniques has revealed that the primary Vincent charge 
resembled light marine oils of Late Jurassic (J40) origin from the central and western 
Barrow Sub-Basin (e.g. Griffin 1). The Laverda and Enfield J50 (Macedon) oils show 
slightly more terrigenous source character. In this respect they are intermediate between 
the main Barrow family, and the group of oils exemplified by Leatherback 1 (see below).  
 
A group of oils with much stronger terrestrial affinity than those of the main Barrow-
Dampier-Exmouth family are found in the eastern part of the Exmouth Sub-Basin (Figure 
29). These include Leatherback, Blencathra, Outtrim and Rough Range. The oils show 
varying degrees of terrestrial influence in their biomarker profiles, and are all relatively 
waxy. The Rough Range crude is regarded as an end member, with no marine influence, 
and it appears to originate entirely from coals or lacustrine shales. Callovian (J30) 
sediments in Leatherback 1 show a reasonable correlation with the Leatherback oil. 
Although this oil is in a TR20 (Triassic) reservoir, the source rock is not likely to be of 
Triassic age as the oil contains abundant retene and other conifer biomarkers, more 
characteristic of the latest Middle and Late Jurassic (van Aarssen et al., 1996; van 
Aarssen et al., 2000). This family of oils is generally less mature than those in the central 
and northern Barrow Sub-basin, consistent with a source closer to the basin margin. 
Summons et al. (1998) have shown that oil from a core at Dill 1 also correlates with 
Leatherback 1 crude, making it the most northerly example of this fluid family. It is not 
clear if this oil is coming from a more proximal facies of the J40, J30 or J20 section. 
 
Beagle Sub-Basin ( 
 
The geology and early exploration in the Beagle Sub-basin area is described by Blevin et 
al., 1994. The Beagle Sub-basin at the end of 2001 contained one field discovery (the 
Nebo Field; Osborne, 1994) and 17 exploration wells with a historical technical success 
rate of 6% and a 0% historical success rate for fields greater than 20 mmboe. The 
undeveloped Nebo field is estimated to contain up to 5mmbbls of recoverable oil. 



 68 

 
The Nebo oil is a one of only two oils along the North West Shelf for which there appears 
to have been no contribution of marine algae to the source (Woodside, unpublished data). 
All other fluids are at least partly derived from marine algal kerogens. No specific oil-
source correlation has been established for Nebo but modelling suggests that J20 fluvio-
deltaic sediments are sufficiently mature in the adjacent graben to source this oil.  The 
total lack of marine biomarkers and relatively high wax content (19%) argues against the 
source beds being marginal marine to paralic delta top environments, and the most likely 
origin is a discrete interval of fluvial or (more likely) lacustrine carbonaceous shale.   
 
The Beagle Sub-basin has several wells on robust structural traps which were thought to 
have failed due primarily to trap breach (Blevin et al., 1994). Fair source rock sections 
are present within some wells within the J20 section and these can be modelled as being 
within the oil window at depth. Woodside interprets the lack of success in this inboard 
area as due to the absence of an effective source rock.  The outboard area remains 
untested. 
 
Offshore Canning  Basin 
 
The offshore Canning Basin is described by Horstman and Purcell (1988), Lipski (1994), 
Colwell and Stagg, (1994), and Smith et al. (1999). The basin is relatively underexplored 
but large long-lived structures at the base regional seal (particularly the Bedout structure) 
are devoid of hydrocarbons and it is strongly suspected that there may be no effective 
hydrocarbon charge within most parts of the basin. 
 
The offshore Canning Basin at the end of 2001 contained one undeveloped discovery 
(Phoenix) and nine exploration wells with both a historical technical success rate and a 
historical success rate for fields greater than 20 mmboe of 11%. The Phoenix field is 
estimated to contain (scope) reserves of 500bcf of gas with no condensate or oil, 
however, the confidence level on this estimate based on the available data is very low. 
The Phoenix 1 gas is reservoired in fluviatile sediments of TR10 Triassic age, which also 
probably act as the source off-structure. This assignment cannot be confirmed by direct 
fluid-source correlation but is inferred on maturity grounds. 
 
Browse Basin (Figures 2, 7, 8, 9, 12, 18, 29, 33, 34) 
 
The petroleum geology of the Browse Basin is described by Maung et al. (1994), 
Struckmeyer et al. (1998) and Blevin et al.(1998a, b). The Browse Basin at the end of 
2001 contained 19 field discoveries and 59 exploration wells with a historical technical 
success rate of 32% and a 14% historical success rate for fields greater than 20 mmboe. 
The basin is estimated to contain (scope) reserves of 35 Tcf of gas, 722 mmbbls of 
condensate and 15 mmbls of oil which equates to a 11%/89% condensate/gas volume 
split respectively by boe. None of these estimated reserves have been developed.  
 
The Browse Basin resource base is dominated by the large J20 Scott Reef, Brecknock 
and Brecknock South horst block dry gas fields (Figures 2 and 7) (Longley et al; 2002 
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and Bint, 1988) that have been discovered outboard of the main Caswell Sub-basin 
source kitchen area (Figure 34). Inboard of this depocentre are the relatively small K30 
Gwydion and K40 enigmatic Cornea basement drape fields (Spry and Ward, 1997; 
Ingram et al., 2000) which contain both gas and oil.  In the north of the Caswell Sub-
basin the large Brewster K10 drape structure contains wet gas (Figure 8) and in the south 
a single small gas pool is interpreted to have been intersected by the Arquebus 1 well 
within an inversion structure formed (not just re-activated) by Neogene tectonism. This 
has previously been interpreted by Haston and Farrelly (1993) to be a potential oil 
accumulation. A very small oil accumulation was also intersected at Caswell 2 (Figures 2 
and 29) within the K60 section (Figures 7 and 9). All pools except the small Caswell 2 
accumulation are reservoired in sands beneath the level of the base regional seal.  
 
The Central Caswell Sub-basin is currently in the gas window at the J20 level and the 
basin is devoid of thick anoxic J40 marine shales except for locally in the north adjacent 
to the Brewster Field, where an extension of the J40 Vulcan rift basins system (the 
Heywood-Anderton graben) extends into the Northern Browse Basin area.  
 
Good Late Jurassic oil-prone source rock successions have not been identified in the 
offshore Canning and Browse basins (Figure 33). This is because no major rifting 
occurred in the region during the Oxfordian and Tithonian rift events elsewhere on the 
margin (Figure 18) and consequently the restricted conditions that favoured development 
of marine source rocks were not developed. Source rocks are present within the J20 
deltaic units (Figure 12), but these are generally gas-prone where penetrated (Figure 33). 
 
The gas potential of the Early-Middle Jurassic is highlighted by the giant gas fields at 
Scott Reef, Brecknock and Brecknock South. These gases have low CGRs  (around 20 
bbls/MMscf), compared with fields in the Carnarvon Basin, and yet the liquid fraction 
boiling range extends to beyond C30. Thus, in many respects they resemble an oil 
dissolved in gas (rather than a product of high maturity), and oil rims could develop if 
these fluids occurred in slightly shallower traps. No explicit fluid-source correlation has 
been established, but condensate biomarkers suggest a clastic source, containing mixed 
marine-terrestrial kerogen at moderate to high maturity. Kerogens of this type, and with 
variable quality, occur throughout the J20 deltaic section, which is interpreted to be the 
principal source (Figure 33).  
 
Elsewhere in the Browse Basin, the pervasive Middle Jurassic gas charge is 
supplemented to varying extent by liquids derived from Late Jurassic and Early 
Cretaceous marine shales (J40 and K30 respectively). The Gwydion, Cornea and Caswell 
2 oils are all interpreted to be the product of K10-K20 (Early Cretaceous) oil system 
diluted with J20 Jurassic (and perhaps older) gas (see Blevin et al., 1998a). The 
biomarker signature is dominated by the Early Cretaceous source, and these compounds 
are present in much higher concentrations in oils than in condensates. Nevertheless, a 
mixed origin is evident from the gas isotope data, Cornea 1 gas for example, being very 
similar in its isotope profile to Brecknock South and also only moderately biodegraded 
compared with the heavily biodegraded Cretaceous oil. The CGR of the Brewster gas is 
higher than those of Brecknock/Scott Reef, probably due to a contribution from Late 
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Jurassic shales, which are gas-mature within its drainage cell (though no information on 
the geochemistry of the Brewster fluid was available for this study), and penetrated at 
Heywood 1. The Caswell Sub-basin petroleum system at the base regional seal level is a 
laterally drained, high-impedence migration system and is interpreted to be largely gas 
flushed (Figure 29). The shallow oil at Caswell 2 from the K10-K20 section indicates a 
shallow oil play above the level of the regional seal may be locally viable in basinal areas 
where it is protected from gas flushing and/or biodegradation as has occurred in inboard 
areas. 
 
Vulcan Sub-basin (Figures 2, 12, 33, 34) 
 
The tectonostratigraphy of the Vulcan Sub-basin is described by Pattillo and Nicholls 
(1990) and the structural evolution of the area is summarised by Woods (1994).  
 
The Vulcan Sub-basin at the end of 2001 contained 18 field discoveries and 67 
exploration wells with a historical technical success rate of 27% and a 13% historical 
success rate for fields greater than 20 mmboe. The sub-basin is estimated to contain 
(scope) reserves of 1.3 Tcf of gas, 31 mmbbls of condensate and 357 mmbls of oil which 
equates to a 58%/5%/36% oil/condensate/gas volume split respectively by boe. Of these 
discovered estimated (scope) reserves at the end of 2001 some 170 mmbbls of oil, 31 
mmbbls of condensate and some 1.2 Tcf of gas remains undeveloped.  
 
The Vulcan Sub-basin contains numerous large J40 oil-only complex horst structures 
such as Jabiru, Challis and Skua (Nelson, 1990; Gorman, 1990; Osborne, 1990). Other 
accumulations include the Oliver oil and gas J40 tilted fault block and the small horst 
blocks such as Montara, Bilyara and J20 Maret accumulations in the south. The Puffin 
K60 anticlinal field (circa 10-20 mmbbls) is the only significant oil pool above the 
regional seal along the margin. 
 
Source rocks in the Vulcan Sub-basin are stratigraphically extensive, with good liquids 
potential occurring throughout the J20-K30 Jurassic and Early Cretaceous section (Figure 
33). Evaluation of our Rock-Eval database suggests peak liquids potential occurs in J10-
J20 (Early-Middle Jurassic) deltaic successions (Figure 12) and within J40 
(Kimmeridgian) marine anoxic shales. In the Swan Graben area (Figure 2), axial wells 
penetrate a discrete, oil-prone marine source interval towards the top of J40 
(Kimmeridgian, D. swanense biozone), whereas further north, in the Paqualin Graben, 
sediments of this age are virtually absent, but a thick section of liquids-prone shales are 
present within the base of the J40 (Oxfordian W. spectabalis biozone). As for the 
Northern Carnarvon rift systems, these source rocks are interpreted to have been 
deposited within partially restricted, anoxic marine rift basins during the J40 Oxfordian-
Kimmeridgian time.  
 
The multiple source levels present in the Vulcan are reflected in the character of the 
fluids, many of which show mixed sourcing. Most oils can be correlated to marine shales 
of the J40 section but the oil rim at Oliver and oils at Montara, Maret and Bilyara 
originate and can be typed to the J20 delta top sediments (Early-Middle Jurassic)  
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(Edwards et.al., 2001 and pers.comm.). The latter oils are more waxy than the Late 
Jurassic family, reflecting the greater land plant contribution to the source. Oils at Puffin 
1 and Pituri 1 may be mixtures of the the two families, and there are hints of a Middle 
Jurassic contribution to the Skua, Challis and Jabiru accumulations. 
 
The Vulcan Sub-basin is ‘oily’ because the area contains oil quality marine and deltaic 
source rocks within the oil window and it is located in a regional saddle area protecting 
the main base regional seal units from gas flushing (Figure 34). The pervasive Neogene 
tectonism has generally enhanced the oil-prone nature of the area since it has limited the 
significance of lateral gas migration and gas flushing of oil and it has allowed selective 
gas leakage from some mixed oil and gas pools. Small gas pools (such as the dry gas 
Pengana close to Jabiru) are adjacent to major oil-accumulations attesting to the selective 
nature of this gas leakage. 
 
Sahul, Flamingo and Nancar Area (Figures 3, 13, 33, 34) 
 
The tectonostratigraphic evolution of the Sahul, Flamingo and Nancar area is described 
by Whittam et al. (1996) and the source geochemistry is described by Preston and 
Edwards (2000). A water washing model is described for the Laminaria area by Newell 
(1999). At the end of 2001, the area contained 19 field discoveries and 74 exploration 
wells with a historical technical success rate of 26% and a 7% historical success rate for 
fields greater than 20 mmboe. The area is estimated to contain (scope) reserves of 3.4 Tcf 
of gas, 233 mmbbls of condensate and 337 mmbls of oil which equates to a 
29%/20%/51% oil/condensate/gas volume split respectively by boe. Of these discovered 
estimated (scope) reserves at the end of 2001 some 227 mmbbls of oil, 4 mmbbls of 
condensate and some 50 bcf of gas remains undeveloped (it should be noted that Bayu-
Undan (Figure 3) is classified as developed for the purposes of this paper).  
 
The Sahul-Flamingo-Nancar area contains numerous significant oil pools such as the J30 
Laminaria and Corallina horst blocks (Smith et al., 1996) and the large Bayu-Undan J30 
gas-condensate horst (Brooks et al., 1996). All of the major hydrocarbons are at the level 
of the base regional seal except for isolated small volumes recovered from K40 fractured 
radiolarite in some wells (Preston and Edwards, 2000). 
 
In the Nancar Trough, Laminaria High and Flamingo High area, source rocks occur at all 
levels, from the J20 (Early-Middle Jurassic) deltaic section through to the K20-K30 
sequence (Figure 33) (Preston and Edwards, 2000). A thin interval of the Echuca Shoals 
Formation, near the base of K20, displays high gamma response and excellent source 
potential based on Rock-Eval data that can be traced over a wide area of the Northern 
Bonaparte Basin. This unit is a condensed section relating to the phase of regional 
subsidence which followed the Greater India separation in the Valanginian. On the 
Laminaria High, the lower J40 marine shale section (Oxfordian, Frigate Formation) 
appears less important as an oil source than the underlying J30 deltaic succession 
(Callovian, Laminaria Formation), which, although composed largely of sandy reservoir 
lithologies, contain thin, but rich, oil-prone shales, deposited in a shallow marine setting. 
Similar source potential extends into the underlying J20 deltaic succession (Middle 
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Jurassic, Plover Formation). Organic matter type is largely terrestrial in the J20 (Plover) 
section, becoming increasingly marine throughout J30 (Laminaria), J40 (Frigate) and J50 
(Flamingo) formations, and wholly marine in the K20 (Echuca Shoals) section. 
 
High quality J30 (Callovian) marine shale oil-source rocks on the Laminaria High 
correlate well with the liquids component of the Laminaria, Corallina, Buffalo and Jahal 
oils, though the latter also displays a contribution from the Frigate Formation seal rock 
(J40). The oils are highly undersaturated, have very low biomarker maturity, and yet are 
very light and paraffinic with API gravities in the range 55 to 60°. This highly unusual 
character is thought to arise from the action of water-washing and leakage upon mixtures 
of a local oil and regional gas charge (Newell, 1999). The extent to which each of these 
factors determines the overall fluid composition is poorly understood. The sub-
commercial oils in the K40 section are typed to the condensed section representing the 
K20-K30 section (Preston and Edwards, 2000). 
 
The large Bayu-Undan gas field at the southern end of the Flamingo Syncline area has 
not been sourced from the Northern Flamingo Syncline because it has a hydrocarbon 
contact which is deeper than the spill chain of oils running out of the Flamingo Syncline 
area. It is either:- 
 
•  locally charged from the same J40-J30 source section as the oil fields to the north and 
has subsequently been protected from trap breaching and/or water washing 
•  or it is a mixture of locally sourced liquids with gas migrating out for the Malita 
Graben area to the south. 
 
The Flamingo Syncline area is the model area for the “delta front ponding” source rock 
concept. The Laminaria structure is interpreted to be a pre-Tithonian extension of the 
palaeo-north Flamingo Syncline, which ran along along an axis joining the Laminaria, 
Bluff and Buller wells. This synclinal axis corresponds with isopach thicks in the J30 
(Elang) section as described by Arditto (1996). Barr (2001) interprets the sands between 
the marine oil source rock shales in this area as offshore bar deposits and hence the north 
Flamingo Syncline area is believed to have been a locally barred, shallow marine 
embayment within which marine oil-quality source rocks were deposited (Figure 13). 
 
Oils and core extracts from the very small volumes of oil in Ludmilla 1 and Fannie-Bay 1 
from the Nancar Trough (de Ruig et al., 2000) contain unusual biomarkers 
(monomethylalkanes) which differentiate them clearly from other fluids in the region, 
and define a “Nancar” family (George et al., 2002). The source is presently unknown. 
 
The Sahul-Flamingo-Nancar area is an ‘oily’ area since most of the source rocks lie 
within the oil window (Figure 34) in an area protected from gas-flushing. The local gas 
charge, which probably filled the earlier traps, was subsequently enriched in oil via water 
washing or dynamic fault leakage. The disparate distribution of oil volumes between the 
Nancar and Flamingo areas may be due to trap breach but it is more likely to be related to 
the deposition of effective J30 delta top source rocks in the latter area, but not the former.  
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Greater Kelp-Sunrise High and Malita Graben (Figure 34) 
 
The petroleum geology in the Malita Graben and Sunrise High area is described by Mory 
(1988) and the area is adjacent to the study area described by Whittam et al. (1996). The 
combined Greater Kelp-Sunrise High and Malita Graben areas at the end of 2001 
contained 7 field discoveries and 16 exploration wells with a historical technical success 
rate of 43% and a 31% historical success rate for fields greater than 20 mmboe. The sub-
basin is estimated to contain (scope) reserves of 20.2 Tcf of gas, 379 mmbbls of 
condensate and 0 mmbls of oil which equates to a 10%/90% condensate/gas volume split 
respectively by boe. Of these discovered estimated (scope) reserves at the end of 2001 
some 54 mmbbls of condensate and some 10.7 Tcf of gas remains undeveloped.  
 
The giant Sunrise - Troubadour gas-condensate field (Seggie et al., 2000; Longley et al., 
2002) and gas at Evans Shoals, Lynedoch and Chuditch are large faulted anticlinal 
structures at the base regional seal level. The former was formed by Neogene structuring 
(at about 3 Ma) and the latter fields are deeply-buried rift-related terrace and tilted fault 
blocks associated with the Tithonian formation of the Malita Graben. The gas in all fields 
originates in J20 fluvio-deltaic sediments (Middle Jurassic). The major kitchen area for 
this charge is the Malita Graben and Troubadour Terrace, to the southeast of the Sunrise 
High. The central basin area is currently gas-mature (Figure 34) and the thick regional seal 
has resulted in a laterally drained, high-impedence basin style where the base regional seal 
level appears to be flushed by gas. AGSO/Geomark (1996) suggested a calcareous 
element in the source of the Sunrise 1 and Troubador 1 condensates on the basis of 
biomarker work. The biomarker content of these fluids is however, extremely low, and 
recent work employing more sensitive methods, and including samples from the more 
recent Sunrise 2 and Sunset/Sunset West 1 wells does not support this interpretation.  
 
Gas and condensate isotope data infer that both the Evans Shoals 1 and Chuditch 1 gases 
are mixtures. For Evans Shoals, anomalies in the isotope composition of isobutane and 
isopentane have been interpreted as evidence of biodegradation (AGSO/Geotech, 2000), 
which seems unlikely given that the reservoir is currently buried to over 3.5 km. The 
Chuditch gas-condensate shows a disconnect between the gas and liquid range isotopes, 
suggesting mixing of a dry gas charge from the Malita Graben, with liquids from a less 
mature kitchen. Very �13C enriched methane in the Kelp Deep 1 gas implies that it was 
expelled from a Permian source (PZ 50) at relatively high maturity. 
 
Petrel Sub-basin and Bonaparte Inboard Shelf Areas (Figure 26) 
 
The Petrel Basin area is described by Colwell and Kennard (1996), McConchhie et al. 
(1996) and Edwards et al. (1997), and the Bonaparte Inboard Shelf area is described by 
Gorter et al. (1998). The Petrel Sub-basin and Bonaparte Inboard Shelf at the end of 2001 
contained 18 field discoveries and 65 exploration wells with a historical technical success 
rate of 28% and a 8% historical success rate for fields greater than 20 mmboe. The sub-
basin is estimated to contain (scope) reserves of 3.9 Tcf of gas, 7 mmbbls of condensate 
and 19 mmbls of oil which equates to a 3%/1%/96% oil/condensate/gas volume split 
respectively by boe. No fields in these areas have been developed. 
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The large gas fields in the area include older discoveries such as Petrel and Tern (Gunn, 
1988b) and the more recent discoveries of Rubicon and Blacktip. All of these discoveries 
are faulted anticlines (some salt-cored) or tilted fault block traps at the regional base 
Triassic seal level, and contain dry gas within PZ50 (Permian) sands. The oil fields 
include the Turtle and Barnett PZ30 accumulations within faulted horst block structures.  
 
The Turtle and Barnett oils correlate with a Carboniferous (PZ30) marine shale seen in 
onshore mineral exploration wells (Edwards et al., 1997) but not yet observed in offshore 
wells. By contrast, the Petrel and Tern gas accumulations are attributed to Permian 
fluvio-deltaic sediments, largely on the basis of their �13C enriched isotope composition. 
There is some danger of interpreting every isotopically heavy fluid as Permian in origin 
as high maturity can also be responsible for enrichment in �13C, however, similarities in 
the fluid signature to stains and inclusion oils at Torrens 1 to the west emphasise the 
widespread viability of the Permian source. The liquids potential of this system is yet to 
be proven, although palaeo-oil indications in Torrens and Osprey (Vulcan Sub-Basin) are 
encouraging (Kennard et al., 2000). The relative volumes of oil and gas in the Palaeozoic 
sections in the Petrel area are small in comparison with the dominantly Mesozoic sub-
basins elsewhere along the margin (Figure 26). 
 
Summary 
 
There are large portions of the North West Shelf that do not contain effective 
hydrocarbon source rock sequences.  
 
Within areas that do have effective source rock there are three broad types: 
 
•  Areas with thick Cretaceous sections with laterally-drained, high-impedance 
migration from gas-mature J20 deltaic source rock sequences, which have resulted in 
efficient gas flushing of basinal areas at the base regional seal level (Caswell and Malita 
sub-basins and western basinal areas of Barrow and –Dampier sub-basins). These areas 
have potential for overlying, vertically-drained, low-impedence style Cretaceous-sourced 
oil plays that are protected from the underlying gas by the regional seal.  
•   
•  Areas with thin Cretaceous sections where J40 (and/or J20/J30 oil-prone source rocks 
are in the oil window and a laterally-drained, high-impedance  migration style together 
with effective underlying aquicludes protects the base regional seal oil accumulations 
from gas-flushing (e.g. central/western Dampier Sub-basin and eastern Exmouth Sub-
basin). These areas have potential for deeper sub-base regional seal gas accumulations 
both beneath the basinal oily areas and on the flanks of the basin. 
•   
•  Areas with thin Cretaceous sections where J40 (and/or J20/J30 oil-prone source rocks 
are in the oil window and a vertically-drained, lower impedence, migration style results 
in a mixed oil and gas (from deeper units) charge to the base regional seal level. Selective 
enrichment of some pools in oil, due to dynamic leakage of gas and/or water washing, 
then occurred (Vulcan, Flamingo, eastern flank of Barrow-Dampier). The most likely 
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primary control on the effectiveness of this dynamic leakage is Neogene tectonism as 
almost all the significant oil accumulations have been reactivated by Neogene tectonism. 
Limited potential exists for major gas accumulations at levels deeper than the base 
regional seal. 

Other generally gassy minor petroleum systems falling outside of the above petroleum 
system types do exist on the Exmouth Plateau and within the Petrel Sub-basin. 

Remaining Potential (Figures 23, 25, 27, 35) 

A comparison of the estimates of the remaining hydrocarbon potential for the major 
basins of the North West Shelf has been made by Powell (2001) and the preferred 
published P50 estimates after AGSO are 1330 mmbbls of oil and 28Tcf of gas. The 
United States Geological Survey (USGS) estimates for the remaining potential along the 
whole North West Shelf (USGS, 2000), namely 4721 mmbbls of oil, 5696 mmbbls of 
condensate and 107Tcf of gas (at the mean level), are not considered to be tenable 
realistic estimates, and in our opinion are wildly optimistic. 

The additional 28Tcf of undiscovered gas reserves predicted by AGSO (Powell, 2001), 
together with considerable associated condensate is credible, given the large under-
explored area, the ‘gassy’ nature of the margin and the focus to date on oil exploration. 
The discovery history (creaming) curve for gas is also still strongly growing (Figure 23) 
and supports this large estimate. Unfortunately, this estimate is largely academic, given 
that an estimated 119Tcf of discovered gas is not yet developed. Only gas which is 
adjacent to existing producing facilities and can compete for production ullage on a value 
basis will attract any exploration focus in the short-medium term. 
The key question is what is the remaining oil potential along the margin. This can be 
divided into two parts; namely: 
1. Are there any remaining unproven oil sub-basins still to be discovered along the 

margin? and  
2. What is the remaining oil potential in the existing ‘oily’ sub-basins?  
 
The question of finding an unproven sub-basin is clear. There are no obvious untested 
Late Jurassic rift basins with marine anoxic (J40) source intervals within the oil-window, 
so alternate oily source models are required. As discussed above, evidence for a 
significant deltaic (J30-J20) oil contribution exists in the Dampier, Beagle, Vulcan and 
Flamingo areas.  The J20 section is believed to be the main source interval for the 
Browse and Malita/Sunrise gas fields and is clearly the prime interval likely to provide 
future oil charge elsewhere. The key future challenge is to apply a model which will 
decrease oil source presence risk within this interval (the delta front enrichment models, 
Figure 35, or any other valid model), since oil-quality source intervals appear to be only 
sporadically developed. Even if this strategy is successful, the generated oily product will 
have to be protected from trap breach and gas flushing and/or it will have to be enriched 
through dynamic gas leakage. 
 
An alternate way of evaluating the new oil sub-basin possibility, is to look at historical 
trends. In general, the history of oil discovery on the North West Shelf, is that new 
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productive oil sub-basin areas have progressively been discovered by wildcat exploration, 
throughout the region’s history (Figure 25). Five provinces have been discovered since 
1963 (Barrow, Dampier, Vulcan, North Flamingo and Exmouth). This equates to one 
every 8 years or about one in every 150 exploration wells. Recoverable volumes 
discovered in these oil areas have been progressively smaller. Exmouth was the last sub-
basin area where discoveries were made (Vincent and Enfield in 1999) (Figure 25). 
Consequently, it may be many years and take many more dry wells, before another 
significant oil discovery. As the exploration maturity of the margin increases, it becomes 
increasingly improbable that a major oil province will remain undiscovered. 
 
The remaining potential in existing proven ‘oily’ areas is perceived to be relatively low 
because: 
 
• Four of the five ‘oily’ areas appear to show a mature (“creamed”) discovery history 
curve character (Figure 25). Only the Exmouth Sub-basin still has a rapidly growing 
discovery trend. 
 
• The vast majority of oil discovered to date has been within simple traps at the base 
regional seal level which were mappable on 2D seismic data (Figure 27).  
 
• The testing of other trap types and deeper play levels has been largely unsuccessful 
because, beneath the regional seal, the section is generally sandy, leaky or gas-flushed 
and the post-regional seal level is generally uncharged or leaky. 
 
• The majority of the base regional seal targets are beneath the amplitude floor or the 
quality of the current 3D seismic is so poor that direct hydrocarbon detection of oil is 
very difficult. 
 
The key question, in proven oily areas of the North West Shelf, is can the 3D seismic 
data be improved to a quality that will directly image oil in the sub-surface? If the answer 
is no, then the oil future for the province is limited and the emphasis will remain on the 
discovered and undiscovered gas. Expansion of LNG facilities, floating LNG and gas-to-
liquids technology, will become the key enablers in the North West Shelf’s bright future. 
 
In summary, the future potential for significant large gas discoveries along the North 
West Shelf is very high. However, the probability of discovering a previously unknown 
significant ‘oily’ sub-basin is perceived to be low, using current 3D seismic technology. 
 

Conclusions 
 
The North West Shelf is a gas province with minor oily sweet spots. These sweet spots 
are largely approaching exploration maturity. The perception is that current technology 
appears to be limited in its ability to define any remaining oil target of significance. 
Woodside and its partners on the North West Shelf are committed to ongoing oil 
exploration and will continue to apply and develop new technologies capable of 
unleashing the next suite of exploration successes.  The probability discovering new ‘oily 



 77 

areas’ elsewhere along the margin, is perceived to be low. The potential for further 
significant gas discoveries is good, but with an estimated 119 Tcf of undeveloped gas 
reserves, there is only limited demand in the short term for exploration targeting gas 
adjacent to existing infrastructure. 
 
Woodside has considerable existing discovered and undeveloped gas reserves on the 
North West Shelf. However, the commercialisation of these reserves will be market 
driven. Only oil discoveries, have the potential to generate early returns. This study has 
shown that (as suspected in 1998) the probability of discovering significant quantities of 
oil along the North West Shelf is believed to be fair at best and is high risk. Woodside 
will continue to pursue opportunities, however, it must balance its portfolio by targeting 
low risk and commercially attractive oil-prone areas, to deliver maximum shareholder 
value and growth.  
 
Significant oil and gas discoveries will continue to be made along the North West Shelf 
in the future.  Woodside will be a part of this continued exploration effort and will also 
allocate a proportion of its exploration effort overseas.  Future technological 
breakthroughs may revitalise the region, as will surprise exploration results, which have 
regularly occurred throughout the region's history. The North West Shelf is a fascinating, 
complex hydrocarbon province. The future potential is unpredictable and new discoveries 
might be spectacular. 
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