Conclusions

Reservoir Performance

Reservoir

Production and Engineering Practices

- •MATRIX
 - Facies
 - Lineament/channel focusing
 - Coal distribution
- •FRACTURE
 - Lithology
 - Lineament Proximity

- •RESERVOIR COMPONENTS
- •PERFORATION PRACTICES
- •STIMULATION PRACTICES

Economic success is measured by improved well recovery and reduced cost through site selection, pay determination, natural fracture characterization, completion optimization, and recompletion potential. These are achieved by:

- Designing appropriate 3-D Seismic for target interval.
- Determining areas of accommodation (faults, linear features, paleo-lows, interval thickness).
- Integrating with existing data and maps to determine favorable depositional and petrophysical facies.
 - Targeting channel areas of high matrix quality.
 - Intersecting linear features in the Almond bar.
 - Avoiding lower Main Almond sandstones unless precautions are taken for overpressure. Recalculate Rw and Sw for proper formation interpretation.
- Running mud and open hole logs including FMI* for fracture interpretation.
- Drilling non-vertical wellbores.
- Utilizing staged hydraulic stimulation techniques with a minimum perforation density of 4 shots per foot.

\$\$\$\$ Bottom line impact?

Implementing the information presented in this study will increase asset value through improved well recovery, higher initial rates (IP), and a decrease in drilling and operational costs. This is accomplished through better infill drilling location selection and advantageous completion practices. As a result, average infill locations will recover greater than .5 to 1.5 BCF per well over historical Almond well completions.

*Mark of Schlumberger