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rracture Density and Permeability

Fracture Density Relationships (continued from previous panel)

Siberia Ridge vertical fracture density ranges from one fracture every 5.5 feet to less than 1 fracture per foot. Fracture density increases with depth In
each of the key Siberia Ridge wells below the Almond 300 interval {figure 1 and figures 6 and 7 on prior panel). The apparent increase in fracture density
with depth may be explained several ways: increased sand penetration, changes in mechanical properties of the sandstones, and closer proximity to
local increases In stress. Increased fracture density in the Siberia Ridge #5-2 and Siberia Ridge #27-4 wellbores corresponds to penetration of thicker,
lower Main Almond and Ericson sandstones. The Siberia Ridge #5-2 is also less sandy than the SRU #27-4 (by a factor of two). The Siberia Ridge #5-2
was drilled to take advantage of a regional structural lineament, whereas the Siberia Ridge #27-4 was not. The difference in fracture density {(normalized
for lithology and wellbore deviation) between these wells, however, is only a factor of 1.4, suggesting lithology strongly influences the presence of
natural fractures in these wellbores.

Figure 1 - Vertical and Deviated Well Comparison Figure 2 - Vertical and Deviated Well Comparison Figure 3 - Vertical and Deviated Well Comparison
Fracture occurrence increases with depth Average fracture spacing decreases with depth Sandstone thickness increases with depth
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Fracture Frequency as a Function of Wellbore Geometry  |,yestigation of the wellbore geometry shows that the fracture spacing reported for the
Siberia Ridge #5-2 are in the Z direction, whereas those reported for the Siberia Ridge #27-4
and Siberia Ridge #5 are in the Y direction {figure 4). Even though the Siberia Ridge #5-2 is

deviated, the average fracture spacing, as determined from FMI, is similar to the Siberia
Ridge #27-4 (figure 2).
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. Table 1 To understand the effect of drilling near andfor through the 5-2
« SRU #5-2 Lineament, the fracture spacings are compared on the same plane.
Dx =323" Siberia Ridge #5-2's fracture density converted to fracture spacing, D,,
e equals 4 inches, whereas fracture density for the wvertical wells
g‘l = :43&)8_) converted to fracture spacing, D,, is 26.8 inches.
i ; What is the effect of wellbore deviation? Utilizing the geometric
*SRU #27;4 relationships obtained from these figures and equations, the spacings in
Dx =4.7 each plane are reported Iin Table 1 to the left.
Dy = (26.8") : _ -
D7— 57" The geometrical dlfferefnce _between D, and D, spacing is a factn_r of 4.7,
and the fracture density difference between the wells normalized for
* Dy =4.7°D)z lithological effects is 6.7. This leaves just a factor of 1.4 as the increase
In natural fracturing possibly due to fault proximity. This result iIs
Wellbore deviation impacts fracture density by a factor of 4.7 surprising, since it suggests that wellbore deviation impacted fracture

Lineament proximity impacts fracture density by a factor of 1.4  spacing more than lineament proximity in the Siberia Ridge #5-2.

Fracture Permeability
Fracture permeability is inversely proportional {both numerically and linearly} to the distance

between fractures. Fracture permeability is also proportional to the cube of the fracture width. Table 2

From a mathematical standpoint {Table 2}, the fracture width effects fracture permeability more Absolute fracture permeability ki

than fracture spacing (figures 5, 6, 7). - ki=54%106ew,2 (darcys) w, in inches

s .
Figure 5 - Fracture Spacing Figure 6 - Fracture Aperture Hydraulic Fracture Aperture ki=8.35™10%w,?” (darcys) w, in cm
s ] e i = Parallel Plane fracture permeability k;:
] - : ko=(k*Wo)/D
I Fan=(Zws,injis | Cubes ko:

ko=2/3{k*w,})/D
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Figure 8 - Fracture Permeability

Fracture Perme ability

This bar graph {figure 8) of mean fracture permeability {(k,, parallel planes) shows mean k, permeabilities
- [ el of 5 md to 225 md. Fracture permeability is lowest in both wells {less than 10 md) in the Almond Bar to

spacing & increased fracture
a?:u?a[;tlﬂgea::_jfi:l the SRU #5.2, Almond 200 intervals, where fracture spacing is also the greatest. Fracture permeability increases to
| e more than 50 md in the Almond 300 interval in the Siberia Ridge #5-2, and the Almond 400 interval in the

Siberia Ridge #27-4. This permeability increase corresponds to the increase in fracture density.

There is tremendous fracture permeability {225 md) in the Siberia Ridge #5-2, Alimond 500 interval. Since

fracture spacing is the same as the Siberia Ridge #27-4 in this interval, why Is fracture permeability so
high?

A glance at the distribution of fracture apertures {fiqure 9) answers this question. The very large

oo B apertures in this interval are masked by the interval mean. For this reason, fracture data needs to be

gy g omn e ey e mm o manipulated and viewed a number of different ways. Averaged data allows for ease of comparison

'  between wells or intervals, but point to point fracture data Is necessary to compute discrete fracture
permeability values.
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