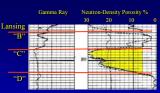
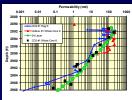
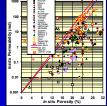
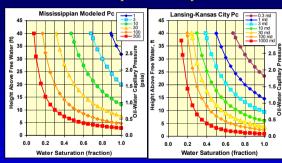

Mississippian Permeability vs Porosity k=


Lithofacies	Α
Packstone	0.00525
Pack-Wackestone	0.00150
Vackestone	0.00043
Mud-Wackestone	0.00012
Mudstone	0.00004
Shaly Mudstone	0.00001


Curves Dependent on

- •± 5X
- Lithofacies
- •Grain type
 - -Echinoderm
 - -Sponge spicule
- Moldic content

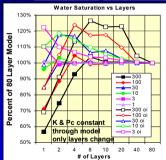

L-KC CO2 I#1


 $log k_i = 0.090 \times + 0.47 MCI - 3.2 (SE=5.5x)$

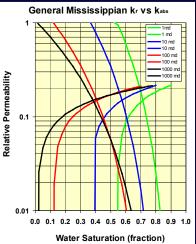
- · Permeability also dependent on:
 - depth below unconformity surface
 location within crossbed set
- logk = -0.157 D + 0.035 x + 1.653

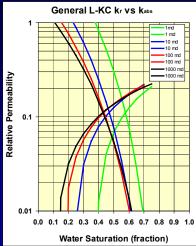
Both L-KC & Miss Sw is sensitive to height and permeability

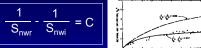
Scaling for Capillary Pressure



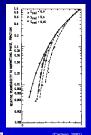
· Upscaling static Sw is algebra

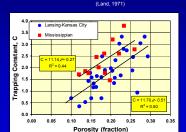

<u>but</u>

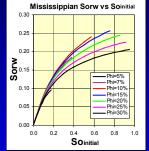

- Upscaling Pc to obtain accurate Sw dependent on layers and Pc curve
- Height of transition zone to total pay interval
 - Decoupling Sw and Pc sets up Pc conflict in simulation

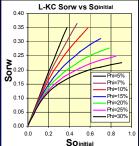


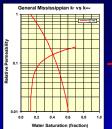
Kr shifts with absolute permeability

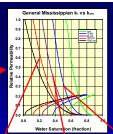


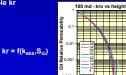

Kr is dependent on initial oil saturation


Geffen et al, 1951 Osoba et al, 1951 Land, 1971 Killough, 1976 Carlson, 1981 Hiraski, 1995


Land, 1971



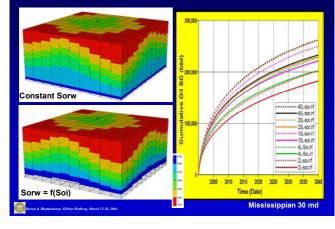

Residual Oil vs C and S_{oi}



 $kr = f(k_{abs})$

Simple kr

0.6


Water Saturation, fraction

Simulation Results

