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It is well recognized that accurate reservoir simulation and management requires a 

quantitative model of the spatial distribution of reservoir storage and flow properties and an 
understanding of the nature of reservoir heterogeneity at many scales. Within the thin (1.5-10 m 
thick), heterogeneous, shallow-shelf carbonates of the US Midcontinent, basic petrophysical 
properties (e.g., porosity, absolute permeability, capillary pressure, residual oil saturation, 
resistivity, and relative permeability) vary significantly horizontally, vertically, and with scale. In 
addition, many of these reservoirs produce from structures of less than 10-20m, and therefore 
exhibit variable initial saturations and relative permeability properties by virtue of being located 
at different heights (above Free water level) in the capillary (pressure) transition zone. Rather 
than being simpler to model because of their small size, simulation model sensitivity to property 
architecture is increased in these reservoirs challenging characterization and simulation 
methodology and illustrating issues often less apparent in larger reservoirs. Understanding these 
issues is critical to successful reservoir management as reservoirs mature and enhanced recovery 
methods are planned and implemented. Characterization and simulation of reservoirs from two 
major Kansas formations provide examples of the influence of petrophysical architecture, end-
point saturations, and upscaling on predicted performance, and the errors in performance 
prediction that can result from using upscaled models as opposed to fine-scale architecture. 
Results from this study also illustrate how the input of properties measured at one scale into flow 
simulations models performed at another scale result in diverging reservoir performance 
prediction leading to potentially incorrect reservoir management.  

In Kansas, Mississippian-age dolomite and limestone mudstones to moldic packstones 
were deposited in a shallow-shelf to gentle sloping ramp setting. Post-depositional regional 
uplift, subaerial exposure and 
differential erosion resulted in variable 
preservation and relief, dissolution of 
some bioclastic grains, and diagenetic 
overprinting of the original 
depositional fabric. Reservoir 
properties are well correlated with 
lithofacies with porosity (2-20%) and 
permeability (0.001-200 md) generally 
increasing from mudstones to 
packstones (Fig 1).  
 
 
Figure 1. Basic petrophysical trends for 
Mississippian carbonates in Kansas. 

Mississippian 
Permeability vs Porosity

Lithofacies A
Packstone 0.00525
Pack-Wackestone 0.00150
Wackestone 0.00043
Mud-Wackestone 0.00012
Mudstone 0.00004
Shaly Mudstone 0.00001

k=A 3.45

Arnold & Lippoldt Permeability vs. Porosity
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log ki = 0.090 + 0.47 MCI – 3.2   (SE=5.5x)

• Permeability also dependent on:
• depth below unconformity surface
• location within crossbed set

• logk = -0.157 D + 0.035 + 1.653



 

Both L-KC & Miss Sw is sensitive to height 
and permeability
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Mississippian Modeled Pc
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Lansing-Kansas City Pc
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W ater Saturation vs Layers
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Kr shifts with absolute permeability
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General Mississippian kr vs kabs
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Kr is dependent on initial oil saturation
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Mississippian Sorw vs Soinitial
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General Mississippian kr vs kabs
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General Mississippian kr vs kabs
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Simple kr

kr = f(kabs)

kr = f(kabs,Soi)



 

Simulation Results
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Constant Sorw

Sorw = f(Soi)
Mississippian 30 md


