--> Using 3D Seismic Technique in Predicting Bahariya Reservoir Facies of the Kenz Field in Khalda Concession

Datapages, Inc.Print this page

Using 3D Seismic Technique in Predicting Bahariya Reservoir Facies of the Kenz Field in Khalda Concession, Western Desert, Egypt

By

Azza Kamel1, Fekry Yousef1, Khaled Saied1

(1) Khalda Petroleum Company, Cairo, Egypt

 The discovery of the Kenz field is considered a paradigm (milestone) shift in Khalda’s exploration policy, which led to an outstandingly successful oil and gas development phase. The kenz discovery proved the existence of multi oil and gas reservoirs within the Bahariya and Alam El Bueib formations of the Lower Cretaceous.

The Bahariya formation is the main oil reservoir in the Kenz field as well as in nearby fields. The main productive zones in the Bahariya are the Upper and some of the subzones in the Lower Bahariya formation. The cumulative oil production from the Bahariya reached nearly over 5 MMSTBO, which represents more than 90% of the total oil production of the Kenz field.

The Bahariya formation is geographically well distributed in the Kenz field as well as the Khalda-West concession, without remarkable thickness variation. However, severe facies variations were observed from well to well. The Bahariya deposits are typical of muddy inner shelf and tidal flat environments, with sequences of small channels and bars. Thus, their quality and orientation represents the main risk factor to be taken into account for assessing the reservoir uncertainty.

This paper is a trial to employ amplitude information from 3D seismic data, integrated with geological and petrophysical data to predict and model the facies distribution of the Bahariya reservoirs. Acoustic impedence inversion data has been used to derive amplitude maps for each reservoir subzone in order to construct facies maps that were calibrated with standard lithological data from wells. Amplitude maps for each reservoir subzone were derived from acoustic impedence inversion data in order to construct facies maps and calibrate them to standard lithological data from wells.