Abstract

The Nesson anticline is a major, south-plunging anticline that lies in northwest North Dakota. The Red River “B” zone is a dolostone flow unit that spans the “B” Laminated Member to uppermost “B” Burrowed Member of the Ordovician Red River Formation. Oil and gas production occurs at depths from 12,600 to 13,950 feet. Red River “B” production and oil shows (>50% oil recovery or Sw <35%) come from 62 wells that occur along crestal portions of the anticline. Intercrystal porosity is developed in dolostone with an average crystal size of 15 microns. Oil-bearing cored porosity varies from 4–20% (average 9%) and permeability varies from 0.02–5 md (average 0.75 md Ka). Average cored water saturation is 22% and average cored net pay is 8 feet for core Sw <35%. The logged oil-productive water saturation varies from 6–35%. Much of the “B” accumulations consist of volatile oil (48–50° API, with 2,100–3,200 GOR at virgin pressure) that comes from off-closure anticlinal locations. In gas caps on structural closures, oil gravity is 53–58° API and GOR is 3,600–10,000+. Capillary pressure and saturation data are consistent with intermediate wettability conditions and the presence of two large accumulations: 1) Beaver Lodge and 2) Antelope-Blue Buttes-Charlson. Both accumulations have free-water levels tilted 35 ft/mile to the east-southeast.

Red River “B” oil producing characteristics are illustrated in Blue Buttes field on the southern portion of the Nesson anticline. Average logged net pay in oil-bearing wells is 8.8 feet, with 20% water saturation and 11.4% porosity. Four vertical completions (including three commingles) were made and four wells with “B” pay were completed in other formations. Two structure-flank horizontal re-entry wells produced water and oil. One grass-roots horizontal well (Olson 9-11H) targeted the crestal portion of the plunging anticline in Sec. 9, T150N-R95W. Due to drilling challenges, the well only achieved 1,872 feet in-zone. Due to hole-obstruction issues, the well was not acidized or fracked. Initial (30-day) production was 221 BOPD (48° API), 733 MCFD and 30 BWPD and the well produced 219,939 BO, 869 MCFG and 15,352 BW in 11 years. It is likely that modernized horizontal drilling technology can overcome drilling and completion issues to achieve improved production.
References Cited

Petty, D. M., 2022, Duperow characteristics in Beaver Lodge field, North Dakota, AAPG Search and Discovery Article #20495, 34 slides, accessed April 24, 2022
Red River “B” Reservoir Properties on the Nesson Anticline, North Dakota

By David M. Petty
Acknowledgements

• The author worked fields on the Nesson anticline for Hess Corporation from 2006-2016 and benefited from previous work done by Hess geologists, geophysicists and engineers.

• A portion of the analysis in this study evaluates data acquired by Hess Corporation as part of a Special Core Analysis program that was initiated in 2015 and completed in 2016.

• The interpretations presented here represent those of the author and do not necessarily represent interpretations of Hess Corporation or individuals within Hess Corporation.

• Thanks for Joshua Miller for shepherding this presentation through the Hess approval process.
Geologic Setting
STRUCTURE
Top “B” Porosity =
Base “B” Anhydrite
C.I. = 200 ft

Red River “B” Oil
Accumulations (areas above free-water level;
not all areas are oil-productive)
Southern Blue Buttes Field Type Log
Loomer #16, T150N-R95W, Sec. 5

Nesson Anticline
Oil and Gas Distribution

Volatile oil reservoirs
- 48-50° API
- 2,100-3,200 GOR (at virgin conditions)

Gas caps
- 53-58 ° API
- 3,600-10,000+ GOR
- Overlie volatile oil columns

Gas-condensate
- >50° API with GOR > 10,000
- Confined to structural closures
- 3 small (1-well) oil accumulations

Olson 9-11 Red River “B” 48° oil
Type Log: Northern Blue Buttes Field
T151N-R95W, Sec. 5; Keogh #6; NDGS #9184

“B” Anhydrite

“B” Laminated

“B” Burrowed
10-16’ below base anhydrite

Note: this well has above-average porosity in “B” reservoir

Perf test “B” porosity: 393 BOPD, 1428 MCFD, 4 BWPD
Completed commingled with Red River “C” & “D”
Red River “B”
Lithology & Petrophysics
Red River “B” Core Data

- 10 cored wells with routine core analyses
- 1 of 10 (10%) of cored wells tight (Ø < 6%)
- Special Core Analysis (SCA) done on 3 cored wells
- Best porosity (Ø >14%) not available for sampling in SCA

= “B” Core Analysis

= “B” Special Core Analysis
Lithology: Dolostone

- Higher porosity samples (>10%) are 97-99% dolomite
- Dolomite crystal size is highly variable; average size is ≈15 microns
- “B” laminated typically has better permeability than “B” burrowed
- Tight wells (Ø <6%) may be limestone, or dolostone or anhydritic dolostone

USA 18-13
T154N-R95W-
Sec. 18
13,896.0’
Ø = 13.6%
Ka = 2.6 md
“B” laminated
Red River “B” Log Analysis

- No lab “m” or “n” data
- Empirically, best match to core data:
 - $m = n = 2.0$, with $R_w = 0.013$
- Sonic log = poor core porosity match
 - Unknown lithology (dolostone, limestone or anhydritic) is largest uncertainty
- Neutron-Density log good porosity match
 - With no hole washout
 - Older wells (pre-1973) do not have Neutron-Density logs
 - 84 out of 188 Red River wells (45%) have minimal Neutron-Density log washout
 - 12% of 84 wells tight ($\phi < 6\%$)
Porosity-Permeability-Saturation Data

- Logged oil-productive Sw = 6-35%
- Logged Sw >35% = water productive
- For core Sw <35%:
 - Core porosity = 4-20%
 - Average core porosity = 9%
 - Core permeability (Ka) = 0.02-5 md
 - Average core Ka = 0.75 md
 - Average core Sw = 22%
 - Average core net pay = 8 ft
Red River “B” Hg-Injection Capillary Pressure Data

Porosity Cutoff ≈6%

Wetting Phase Saturation (1-Hg); Percent

0 20 40 60 80 100

Hg Injection Pressure (PSIA)

0 426 849 1061

213 426 636 849 1061

8.3% Ø 0.2 md Ka
11.4% Ø 0.5 md Ka
6.8% Ø 0.09 md Ka
10.5% Ø 0.4 md Ka
13.6% Ø 2.6 md Ka
11.1% Ø 0.8 md Ka
10.4% Ø 0.5 md Ka

5.2% Ø 0.0079 md Ka
3.7% Ø 0.02 md Ka

2.9% Ø 0.0002 md Ka
4.4% Ø 0.0012 md Ka
4.0% Ø 0.002 md Ka

Williams #12-13
T158N-R95W, Sec. 12
USA #18-13
T154N-R95W, Sec. 18
McKeen #30-23
T153N-R94W, Sec. 30
Averaging Method to Obtain Height Curves for Porosity & Water Saturation Values

Height Chart

One Height

Multiple Heights

Oil Column Height Above Free-Water Level (Feet)

Height Chart

Porosity

Sw
Calculating Free-Water Level

• Only wells with good quality data
• Not in gas cap
• Use Height Chart
• Convert to subsea depth for top “B” Ø
 = BLUE NUMBERS

Map Free-Water Level

• Map FWL = BLACK NUMBERS
• Identify accumulations with a common free-water level
 = GREEN OUTLINES
Red River “B” Tilted Oil Accumulations

- Large Red River “B” accumulations have free-water levels tilted average 35 ft/mile to east/southeast
- Hydrodynamically southeast tilted oil accumulations have previously been defined in the overlying Madison reservoirs (DeMis, 1995) and Duperow reservoirs (Petty, 2022) on the Nesson anticline
- Southeast-tilted Red River “B” accumulations are probably hydrodynamically tilted (see final slide)
Beaver Lodge Field Case Study
BEAVER LODGE FIELD
STRUCTURE
Top Red River “B” Porosity
C.I. = 100’

- Anticlinal closure
- One of largest structural closures in North Dakota

Type Log
Beaver Lodge Field Type Log
BLDU G-303
T155N-R95W, Sec. 18

Final 4-hr Perf Test:
78 BOPD (49°)
0 BWPD
250 MCFD

Completed in Duperow Formation

Rw = 0.013
m = n = 2.0

Average Porosity

Net pay = 10 ft
Avg \(\phi \) = 9%
Avg Sw = 20%
Red River “B” Porosity is Oil/Gas-Bearing
“B” Produced Oil/Gas, or Tested >50% oil, or Sw <35%

Red River “B” Porosity is Water-Bearing
No Core Data or Usable Neutron-Density Log
Old Well or Neutron-Density Log Washed-Out

Red River “B” tight (20% of wells)
“B” Neutron-Density Porosity <6%

20 = Red River “B” Average Sw

Approximate Gas-Oil Contact
Free-Water Level
Beaver Lodge Field
Red River “B” Reservoir
With
Perf-Test & Production Data

Reported IP:
48 BOPD (48°)
51 BWPD
120 MCFD
Cum:
4 MBO
7 MMCFG
10 MBW

Note: Avg Sw = 30%

Summary:
• Most “B” production commingled
• “B” porosity is heterogeneous
• Water saturation and capillary pressure data indicate a single, large “B” reservoir,
• Oil Column Tilt = 35 ft/mile East
McKeen #30-23
T153N-R94W, NESW Sec. 30
Oil-Productive Flank Well
3D Seismic Confirms “Saddle” Structure
200’ Low to Structure Crest

Antelope Field

McKeen Core Data:
Max. Ø = 9.5%
Sw @ max Ø = 18%
H = 130 feet above FWL
Blue Buttes Field Case Study
BLUE BUTTES FIELD
STRUCTURE
Top Red River “B” Porosity
C.I. = 25’

- Structural closure connected via anticline to Hawkeye Field to north
- Southeast plunging anticline

Type Log = Pilot for Horizontal
Type Log for Southern Blue Buttes
Olson 9-11H; T150N-R95W Sec. 9

Pilot for Horizontal Red River “B” well

\[m = n = 2.0 \]
\[Rw = 0.013 \]

\[\begin{array}{cc}
\text{GR} & \text{Neutron-Density Porosity} \\
13,790' & 13,800' \\
13,810' & 13,820' \\
13,830' &
\end{array} \]

\[\phi \quad Sw \]
\[
\begin{array}{cc}
11 & 23 \\
15 & 14 \\
10 & 34 \\
\end{array}
\]

Net pay = 9'
Avg. \(\phi \) = 12%
Avg. Sw = 24%
Red River “B” Porosity is Oil/Gas-Bearing

“B” Produced Oil/Gas, or Tested >50% oil, or Sw <35%

Red River “B” Porosity is Water-Bearing

No Core Data or Usable Neutron-Density Log

Neutron-Density Log Washed-Out

Structure
Top
Red River “B” Porosity
C.I. = 25 ft

STRUCTURE
With “B” Contacts and “B” Data

= Red River “B” Porosity is Oil/Gas-Bearing
= “B” Produced Oil/Gas, or Tested >50% oil, or Sw <35%

= Red River “B” Porosity is Water-Bearing

= No Core Data or Usable Neutron-Density Log
= Neutron-Density Log Washed-Out

Note southeast-plunging anticline prospective area

24 = Red River “B” Average Sw

= Approximate Gas-Oil Contact

= Free-Water Level
STRUCTURE
With “B” Contacts and “B” Data

- Deepest field (13,800’ TVD) at “B” Ø
- No wells tight (Ø<6%) in “B”
- Best average Ø among larger fields
 - Average net pay = 8.8 ft
 - Average Ø = 11.4%
 - Average Sw = 20%
 - Average Ka = 1.4 md (routine analysis)

24 = Red River “B” Average Sw

= Approximate Gas-Oil Contact
= Approximate Oil-Water Contact (Sw ≈ 35%)
IP (Horizontal) 2008:
- 221 BOPD (48°), 733 MCFD & 30 BWPD (30-day)
- Cum: 219 MBO, 869 MMCFD & 15 MBW (11 years)

IP (Horizontal) 2000:
- 55 BOPD (48°), 144 MCFD & 92 BWPD (30-day)
- Cum: 42 MBO, 110 MMCFD & 207 MBW (5 years)

IP (vertical) 1985:
- 61 BOPD (48°), 100 MCFD & 0 BWPD (30-day)
- Cum: 287 MBO, 830 MMCFD & 6 MBW (25 years)

Perf Test (Vertical):
- 81 BOPD, 368 MCFD & 4 BWPD
- Commingled with RR “D”

Swab Test:
- 60 BOPD, 362 MCFD & 262 BWPD
- Completed in Stonewall

Note:
- Avg Sw = 34%
- Ø = 20% & H = 6 ft
- 1 Mile

Structure:
- Top Red River “B”
- Porosity C.I. = 25 ft

Above OWC with “B” Production & Perf-Test Data

Commigled with Red River “C” & “D”
- Horizontal re-entry unsuccessful

** algum texto**
Decline Curves

Wheeler 10-23 Vertical “B”
Olson 9-11 Horizontal

30-day IP:
Wheeler (Vertical) 287 MBO, 0.8 BCF, 6 MBW
Olson (Horizontal) 219 MBO, 0.9 BCF

Note: 20% Log Porosity
This is anomalously high

1 Mile
Olson 9-11 Horizontal
- Difficult to stay in-zone; 2 sidetrack attempts
- Pre-mature TD; 1872’ in-zone
- Due to hole obstruction: No acid job; No frac
- Current or future horizontal drilling technology should be able to drill better, stimulate better and produce better

30-day IP: 221 BOPD
30-day IP: 61 BOPD

Wheeler (Vertical)
287 MBO, 0.8 BCF, 6 MBW

Note: 20% Log Porosity
This is anomalously high

Olson (Horizontal)
219 MBO, 0.9 BCF
15 MBW
Red River “B” Conclusions

• On Nesson anticline, 10-12% of Red River “B” wells are tight (Ø<6%)
• The Red River “B” reservoir commonly has 5-15 feet of net porosity
• Average net pay in oil-bearing wells is 8 feet with average 9% porosity, 22% Sw and 0.75 md Ka
• Red River “B” oil can occur in large accumulations that are hydrodynamically tilted to the east-southeast
• Gas caps with no mappable tilt occur on structural closures
• Red River “B” horizontal economic potential in the central Williston basin is unproven but has not been tested with the most modernized technology
Broader Implications

• Most large Madison, Duperow and Red River oil accumulations in western North Dakota have hydrodynamically east-tilted OWC’s
 • Accepted February 24, 2023; in-press
• All Red River through Madison conventional oil reservoirs and oil-show wells should be investigated to determine if they could be part of a larger east-tilted oil accumulation
• In the western Williston basin, east-plunging anticlines with oil production or oil shows could hold un-tapped potential in thin zones that could be exploited with horizontal wells