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Abstract 
 

Previous studies of diagenetic changes in siliceous mudstones – from opal-A to opal-CT to quartz silica phases – were either performed in 
strata that were one-directionally buried to maximum depth or were uplifted completely to the surface. Together, these studies found large, 
overlapping temperature windows for phase changes that make it difficult to predict the depth of the transition zones. However, many 
subsurface occurrences of biosiliceous rocks with different tectonic and burial histories have experienced more complex histories of burial and 
uplift and have narrower temperature/depth transition zones. In the Belridge field, San Joaquin Basin, the phase change can occur as much as 
2000’ (610m) shallower than what would be predicted from previous studies (c.f. Keller and Isaacs, 1985) with a simple burial history with a 
constant heat flow. We created 1D models of the burial, uplift and erosional histories, and the paleo- and present-day heat flows in 5 different 
wells from three structural positions on the Belridge anticline to understand the full subsurface thermal history of these rocks and the depths, 
temperatures, thicknesses, and character of the opal-A to opal-CT transition zones. These wells contain opal-A to opal-CT transitions zones 
with tops from 1350’ to 2000’ in true vertical depth and that range from 80’ to 170’ in thickness. To characterize the diagenetic processes that 
occurred within phase change windows, we use SEM and XRD to identify opal-A, opal-A’ and opal-CT, d-spacing, and related primary and 
authigenic minerals, as well as processes including fragmentation, dissolution, precipitation, and replacement. 
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The well-studied Monterey Formation is only one of many 
Neogene diatomaceous deposits

Modified from Hein & Parish, 1987 211/2/22



Depth, temperature and composition are important players in 
silica diagenesis

(after Keller & Isaacs, 1985)
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But there’s more…time may play a significant role in diagenesis 
where burial is dependent on tectonic setting

Open ocean, deep sea settingPassive continental margin

(after Siever, 1983) 411/2/22



The western fold belt potentially holds great variety in diagenetic 
history as does the chosen study area

North Belridge

South Belridge
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CA is quite complex with significant spatial variations in burial 
history, sedimentation/burial rate, erosion, uplift, heat flow, etc.

Southern San Joaquin Basin
Generalized Cross Section

adapted from DOGGR (now CalGEM, 1998) 611/2/22



What is the significance of the history or paths of the diagenetic 
boundary on silica phase and rock fabric?

(after Kassa & Behl, 2016)
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South Belridge oil field is an excellent example of the complexity 
within the San Joaquin Basin

Alluvium deposition
↙ Erosion ↘
↑ Uplift ↑
↓ Burial ↓

Tulare deposition
↙ Erosion ↘
↑ Uplift ↑
↓ Burial ↓

San Joaquin deposition
↙ Erosion ↘
↑ Uplift ↑
↓ Burial ↓

Etchegoin deposition
↓ Burial ↓

Diatomite deposition (Belridge)
↓ Burial ↓

Diatomite deposition (proto-Brown Sh.)
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(Schwartz, 1988)

SEM images and quantitative XRD analysis were 
used to constrain and test the following models
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Understanding the diagenetic changes in thermal conductivity is 
critical in determining the thermal history

1 2
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Pliocene uplift has a major effect on the depth of the opal-A to 
opal-CT diagenetic boundary

Sedimentation and structural development were contemporaneous throughout the middle and late Tertiary (Schwartz, 1998)

Initial transition zone top: ~2100’ Initial transition zone top: ~2500’ 
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isotherms

Burial history is certainly a key driver in determining the present-
day depth, thickness and character of the transition zone.

Transition Zone Thickness: ~92 ft Transition Zone Thickness: ~170 ft

SEM and XRD analysis along with digital well logs were 
used to determine the thickness of the transition zone

50% opal-A
23% opal-CT
27% clay

XRD Data (norm)
72% opal-A
0% opal-CT
28% clay
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The boundary is not abrupt in each strata. Opal-A and CT exist 
within the same beds with CT gradually replacing A. 

red arrow: opal-A; yellow arrow: opal-CT 1211/2/22



Can I now estimate a smaller temperature window in which the 
transition occurs within these more heterogenous rocks?

44°C – 44.3°C (~111°F) based on weight percent of detritus between 20% and 23% for this well

*the average clay content from the 564NCOR-33 XRD data was 22% in the diatomite

20% relative detritus by weight 23% relative detritus by weight
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What is the importance of this study?
Tests the Keller & Isaacs Model in the San Joaquin Basin

 Shows Impact of Burial History on Transition Zone

Reaffirms an Understanding of Erosion in the Belridge Fields

Highlights an Inferred Understanding of Transition Zone Character
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