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Abstract 

The ‘fracability’ for organic-rich shale formations is one of the important factors to identify shale production sweet spots. Since this property is 

not well understood, we utilize the mineralogical or elastic brittleness indices, as indirect indicators of fracability estimation. However, the 

elastic brittleness, directly calculated from Young’s modulus and Poisson’s ratio, has a weak correlation with the mineralogical index in 

practice. It can also give misleading results to determine well locations and optimize recovery. For this reason, we conduct statistical analyses 

and apply supervised machine learning to produce a more reliable brittleness prediction. Machine learning techniques can help to solve 

complex and nonlinear problems using large data sets. First, we conduct bivariate correlation analysis to define the most highly correlated 

association of rock physics properties to the mineralogical brittleness. Among the properties, we distinguish four influential factors, such as 

bulk density, Young's modulus, porosity, and overburden stress. Second, we derive a multi-linear regression model from four input variables 

based on the correlation analysis result. This regression model shows a better explanation than the traditional elastic brittleness, presenting 

lower RMSE and higher R2 values. Third, we apply a supervised machine learning method to these variables for a more predictive model. In 

this study, we use the multi-layer feedforward neural network based on the Levenburg-Marquardt algorithm. The approach finds the optimal 

weights for the network and has a better fit to the data than the regression model, decreasing the RMSE and increasing the R2. As a result, our 

combined statistical rock physics and machine learning approach can prevent the blind feeding and over-training of the networks. We conclude 

that machine learning techniques can provide a more accurate estimation of shale brittleness, compared to the traditional elastic brittleness 

method. 
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Research Objective
• Our combined statistical rock physics and machine learning 

approach can provide a more accurate estimation of shale 
brittleness, compared to the traditional elastic brittleness 
method.



Introduction
• Brittleness indices (BI) based on mineral content of rocks
• Jarvie et al., 2007: !"!"#$%& = '(

'()*")*+
• Wang and Gale, 2009: !","-. = '()/0+

'()*")*+)/0+)12*
• Both definitions are the fraction of stiff minerals in the matrix 

volume. Quartz-rich lithologies have a higher Young’s 
modulus and a lower Poisson’s ratio than clay-rich lithologies 
(Herwanger et al., 2015).
• How can we predict this parameter from seismic and rock 

physics properties?



Introduction
• Elastic brittleness based on Young’s modulus and Poisson’s 

ratio
• Rickman et al., 2008: !"3 = 50%× 454!"#

4!$%54!"#
+ 6!$%57

6!$%56!"#
• However, these two elastic moduli have nothing to do with 

rock failure. (ex. Cast iron vs. Wrought iron)
• For this reason, this brittleness index is not physically 

meaningful and can be misleading in organic shale 
reservoirs (Vernik, 2016).



Introduction
• Besides, the correlation between the mineralogic BI and the 

elastic BI from the well data is significantly low. (R = -0.4738).



Introduction
• Brittleness indices based on mineral content of rocks
• Wang and Gale, 2009: !"!"#$ = %&'()*

%&'+"'+*'()*',-+
• Analytic approach has a clear physical meaning, but the nature 

of organic-rich shales has not been well understood.
• In this study, we perform the statistical analysis for the rock 

physics properties to the mineralogic brittleness index and 
predict the modeled index from the well logs with the supervised 
machine learning method.



Research Strategies
• Statistical rock physics analysis (modeling)
• Bivariate correlation analysis
• To find properties which can be effective indicator to the BI

• Multivariate linear regression analysis
• To find the simplest model using the selected properties

• Supervised machine learning
• To improve the modeled BI with a higher R2 and lower RMSE values



Study Area and Datasets
• We use wireline logs and core measurements obtained in 

Wolfcamp shales in the Midland Basin, eastern part of the 
Permian Basin, West Texas.

Well logs Core measurements



Study Area and Datasets
• Mineral composition of Wolfcamp shales
• Shales with a few of interbedded limestone and marls



Study Area and Datasets
• Rock properties of Wolfcamp shales
• Vclay: 0-45%, Porosity: 0-10%, TOC: 0-6%



Statistical Rock Physics Analysis
• Output: Brittleness index (Wang and Gale’s mineralogic BI)
• !"!"#$ = %&'()*

%&'+"'+*'()*',-+
• We calculate the BI values by conducting multi-mineral inversion from 

well logs and calibrate the inversion results with the core XRD data.

• Input: Rock physics properties (10 variables)
• Seismic properties: VP, VS, VP/VS, $
• Elastic properties: K, G, Young’s modulus (E), Poisson’s ratio (PR)
• Rock properties: Porosity, Overburden stress (σ)
• Variables directly related to mineralogy are excluded (e.g. Vclay, TOC).



Statistical Rock Physics Analysis
• Bivariate Correlation Analysis

(1) BIWang, (2) Vp, (3) Vs, (4) Vp/Vs ratio, (5) Bulk density, (6) Bulk modulus, (7) Shear modulus, (8) Young’s modulus, 
(9) Poisson’s ratio, (10) Porosity, (11) Overburden stress 

BIWang

PR
E



Statistical Rock Physics Analysis
• We perform the bivariate correlation analysis to figure out the 

highly correlated association of rock physics properties to the 
mineralogical brittleness.
• Among the properties, we choose four influential factors as 

inputs for a multivariate linear regression model.
• Bulk density ($)
• Young’s modulus (E)
• Porosity (%)
• Overburden stress (σ)

• )* = +8, + +9- + +:. + +;/ + +<



Statistical Rock Physics Analysis
• Model 1: Modified elastic BI
• !" = &.' + &/) + &0

• Model 2: Multivariate linear regression model
• *+ = ,1- + ,2. + ,3% + ,4/ + ,5

Young’s modulus 
(GPa)

Poisson’s ratio 
(unitless) Constant R2 RMSE

BIWang
-0.0048***
(!: -0.2758)

3.5287***
(!: 0.4442) -0.5330 0.2267 0.1146

Bulk density 
(g/cc)

Young’s modulus 
(GPa)

Porosity
(v/v)

Overburden 
stress (psi) Constant R2 RMSE

BIWang
-0.5234***
(!: -0.2108)

-0.0031***
(!: -0.2101)

2.3695***
(!: 0.3054)

0.0003***
(!: 0.5441) 0.3613 0.6381 0.0784

Note that ‘*’ sign indicates the degree of significance of the rock property effect based on p-value (*: p<0.05, **: p<0.01, ***: p<0.001).



Statistical Rock Physics Analysis
• The Model 2 can explain the variation in mineralogic BI better 

than the Model 1, according to the higher R2 value and smaller 
RMSE.
• Therefore, using rock physics properties can enhance the 

prediction of this brittleness index, better than using two elastic 
properties.
• Furthermore, we can also use ‘supervised machine learning’ 

method to design a nonlinear model with a better prediction 
than the simple linear regression.



Supervised Machine Learning
• Input 

• Bulk density (=)
• Young’s modulus (E)
• Porosity (>)
• Overburden stress (σ)

• Output
• Brittleness index (BIWang)

• Methods
• Multivariate linear regression (MLR)
• Probabilistic neural network (PNN)
• Deep feed-forward neural network (DFNN)



Supervised Machine Learning
• Test 1: MLR vs. PNN vs. DFNN
• MLR
• Number of hidden layers = 0

• PNN
• Number of hidden layers = 1

• DFNN
• Number of hidden layers = 5
• Levenberg-Marquardt algorithm
• Training: 70%, Validation: 20%, Testing: 10%



Supervised Machine Learning
• DFNN is a more effective method which shows the better 

prediction than MLR and PNN.
Method Samples RMSE R2

MLR 5513 0.0784 0.6379

PNN

3859 (Training) 0.0748 0.6706

1103 (Validation) 0.0781 0.6365

551 (Testing) 0.0787 0.6197

DFNN

3859 (Training) 0.0707 0.7067

1103 (Validation) 0.0671 0.7380

551 (Testing) 0.0663 0.7306



Supervised Machine Learning
• Test 2: The number of hidden layers
• More layers allow the network to model transforms such as 

higher-order polynomials. They can also approximate the 
training data more accurately.
• As the number of hidden layers increases, this method can 

model more complexity by simulating any nonlinear functions.
• The greater the number of hidden layers, the greater the 

amount of training data required.



Supervised Machine Learning
• The result when using more hidden layers shows better 

prediction with lower RMSE and higher R2 values.
Hidden layers Samples RMSE R2

5

3859 (Training) 0.0707 0.7067

1103 (Validation) 0.0671 0.7380

551 (Testing) 0.0663 0.7306

8

3859 (Training) 0.0684 0.7210

1103 (Validation) 0.0689 0.7325

551 (Testing) 0.0667 0.7355

10

3859 (Training) 0.0665 0.7372

1103 (Validation) 0.0701 0.7211

551 (Testing) 0.0646 0.7497



Supervised Machine Learning

Red: BIWang
Blue: BIMLR
Green: BIDFNN



Conclusions
• In this study, we apply the statistical rock physics modeling and 

supervised machine learning method to the prediction of BI.
• First, we conduct the statistical analysis to choose the best 

association of input properties such as density, Young’s 
modulus, porosity, and overburden stress.
• Second, we improve the prediction model by using the DFNN, 

better than those by MLR and PNN. This result shows that the 
DFNN can provide a more accurate estimation of the BI, better 
than the traditional elastic brittleness.
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