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Abstract 

The true integration of well and seismic data has always been a challenge because of their different responses and resolutions. To resolve these 
ambiguities, machine learning methods are being introduced that change the applicability of seismic data from an exploration context to a 
valuable prospect development tool. This presentation introduces a method based on an association of neural networks to resolve reservoir 
facies heterogeneity distribution and discusses its applicability to an onshore Texas dataset from the Permian Basin. This supervised method 
generates a probabilistic seismic facies model derived from 3D seismic data. Several neural networks, each defined by a different activation 
function, are run simultaneously to avoid biasing any of the neural network architectures. To train the neural networks, lithofacies logs and 
seismic data extracted along the wellbore are used as labelled data. To avoid overlearning, seismic data is randomly extracted away from 
boreholes (soft data), to enrich the initial training dataset and update the final model. The final neural network model is then propagated on the 
full seismic dataset, to generate probabilistic facies models composed of different volumes: most probable facies, maximum probability for all 
facies, and probability for each facies. Analysis of the facies and associated probability distribution introduces valuable insights into prospect 
uncertainties and seismic data reliability for prediction. This method uncovers new direct potential for seismic data use when predicting the 
reservoir lithofacies away from wells, especially when referring to prestack data with any type of seismic attributes. Based on the results, a new 
drilling location was proposed and approved. The study results were accurate - after moving the rig from its original position, the well found a 
good pay facies at correct depth, with double the pay zone thickness and an increase in porosity from 10% to 17%. The predicted lithofacies are 
direct input data for both geologic modeling and volumetrics analysis. 
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Our Vision
• Understand the specificities of subsurface studies

• Uncertainties

• in input data and in interpretation (no ground truth)

• low amount of data (high risk of overfitting)

• Cost of error

• false positive (dry hole) 

• false negative (overlooked prospect)

• Centered around:

• Develop ML to assist domain geoscientists, not replace them

• Automate the tedious and repetitive tasks

• Assist asset team for de-risking management



Approach

• Increase insights:
• Extract hidden information and patterns for geoscientists at specific stages of 

prospect evaluation and reservoir characterization

• Automate easier decisions:
• Transfer user’s expertise to the system

• Account for complexity:
• Solutions tailored for a specific problem



Machine Learning & Subsurface Data

• Machine learning applications for geoscience data have been in use for 
over 25 years (waveform-based classification as a proven technology)

• Geoscience data is growing at a rate where Machine Learning technology 
is considered a necessity rather than a nice-to-have technology.

• Multi-disciplinary and multi-resolution data integration is still a challenge

• This evolution allows us to apply machine learning and predictive analytics 
for prospecting, field development, and production optimization



Reservoir Modeling

• It is essential that reservoir models preserve small scale property

variations observed in well logs as well as capture the large-scale

structure and continuity observed in seismic data

• For the reservoir in this study, the small cyclicity of the carbonate

reservoirs and their high degree of lateral and vertical heterogeneity must

be captured and modeled



The Current State of Lithology Prediction

Analyze separation of elastic properties 

based on class rules

Define rock type log containing class rules

Build Probability Density Functions

Multi-well log data analysis

VpVs P-Impedance crossplot

Class seismic attributes based on PDF 

(facies and probabilities)



Critical Aspects of Reservoir Characterization

• Well data provides reliable information 

but is sparsely sampled

• Well to seismic Tie: Not linear, scale 

difference, N dimensions

• Seismic inversion methods:

• Time consuming, error prone

• Strongly seismic-driven, unclear 

lithology separation

Well-tie / 
Synthetic 

seismograms

Seismic 
processing to 

“Inversion 
Ready” 
gathers

Fluid 
substitution

Inversion 
starting 
model

Facies log 
creation / 
calibration 
with core

Prestack 
Inversion

Wavelet 
extraction

Crossplot 
Seismic and 

Well info

Facies 
in 3D

WELL DATA
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WELL DATA

WELL DATA



Benefits of Machine Learning

Well-tie / 
Synthetic 

seismograms

Seismic 
processing to 

“Inversion 
Ready” 
gathers

Facies log 
creation / 
calibration 
with core

Facies 
in 3D

SEISMIC DATA

WELL DATAWELL DATA

• Capitalize on the continuously increasing 

amount of data

• Explore datasets and identifies patterns 

and relationships that may be non-

detectable by the human eye

• Automate processes that extract valuable 

information in minimal time



Rock Type Classification

• Objective: Combine well and seismic early on

• Supervised learning, only at the wells

• Input / output pairs are known, finite and humanly-validated

• Main risk: Overfitting

• Overfitted networks seemingly accurate, low confidence

• Overcome:

• Step 1: Associative Neural Network

• Step 2: Democratic Learning to enrich training dataset



Rock Type Classification
Strategy

(Tetko 2002, Zhou and Goldman 2004, Gao et al 2010)

Use Several NetworksIncrease Data Amount Reduce Network Complexity

More Data = More Wells
Data Augmentation ?

Simpler, unperfect network
Most likely Lower Accuracy

Combine N predictions
(statistics or NN)

Combining overfitted 
networks?

Associative Neural Network

• Data problem: Training pairs only available at wells

• Sparse data + large network = overfitting = low confidence in prediction

• Overfitting reduction strategies:



Rock Type Classification
Associative Neural Networks
• The use of several naïve networks running simultaneously as an 

associative combination is preferred 

• A neural network is designed to learn in a specific way. Using only one 
supervised neural network tends to bias the results of the training

• A network is built to reach one objective, which is usually to approximate 
data or class densities 

• Defining an ensemble of networks with different learning strategies helps 
to compensate for the existing bias when using only one network



Rock Type Classification
Democratic Learning Concepts
• The multi-strategy learning ASNN performance will be limited by the number of hard data 

samples from the training dataset and can lead to unreliable results

• To avoid this bias, the training dataset is improved by using a combination of hard and 
soft data during a stabilization step (democratic contribution)

• All learning methods will give a vote for each unlabeled data

• If the vote is unanimous, then the unlabeled data is added to the training dataset

• The enriched dataset is then used as input training dataset for the neuron sets

• At the end of all learnings, all neuron sets are merged into one single neuron set



Selection of unlabeled data
Vote

Democratic 
contribution

Learning 2 Learning nLearning 1

𝑈 = 𝑥𝑤, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑗

1st Neural
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Rock Type Classification Algorithm
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Use Case: East Soldier Mound

• Eastern Shelf of Permian Basin – East Lubbock, TX

• 3-4 Mbbl field reserves – shallow vertical wells

• Mixed carbonates – siliciclastic shelf

• Oil source: Horseshoe Atoll reef (~20mi NE)

• Production: Lower Wolfcamp Packstones

• Packstones: High Energy deposit, reef-cycle

• Enhanced Porosity (Bioturbations, Fracturing)

Data courtesy of



Geological Context 

Generalized dip stratigraphic cross section of the Wolfcampian, showing depositional 

systems, and progradation and aggradation of Eastern Shelf 

C (West) C’ (East)



Use Case: Available Data

1%
• Small seismic survey, high resolution, good quality 

• Prestack (offset gathers, 8 angle stacks)

• N poststack attributes

• 3 wells, 9 facies

Data courtesy of



Gathers preconditioning and 

prestack seismic inversion

Define lithofacies / rock typing 

at wellbores (Logs & core data)

Application of DNNA model to 

predict, from seismic data, 

lithofacies distribution

Background studies: Well to 

seismic tie, 3D seismic 

interpretation, sequence 

stratigraphic evaluations, etc.

Facies distribution interpretation

- Integrate different types and scales of well data including wireline, core and core descriptions

- Identify different log data combination as potential input as well as number of lithofacies classes to 

perform clustering in order to get the best discrimination of the different facies in the reservoir

- Consider an hydrocarbon overprint in the facies definition, created when the difference between 

effective porosity and unflushed water is greater than the cutoff of 5%.

- Consider a different combination of seismic information , such as prestack or poststack attributes or 

combination of both

- Different clustering based lithofacies models can be incorporated to validate different scenarios and 

validation performed between well and seismic lithofacies through blind tests at selected wells. 

Detailed, high resolution reservoir lithofacies distribution and reservoir property analysis, subject to the 

quality of the data. This work will feed into reservoir presence and quality.

Workflow



Seismic Data 
0-5 5-10

10-15 15-20

20-25 25-30

30-35 35-40

5 
scenarios

Angle stacks Gathers
Reflectivity-based 

attributes
Layer-based 

attributes
Structural 
attributes

Case A √ √

Case B √

Case C √ √

Case D √ √

Case E √ √ √

Different combination of seismic data type for the prediction

Data courtesy of



Facies description

Output

Maximum 

probability

Probability per 

facies
Predicted

Input
Input

Pre-stack gather at the well location

Original Upscaled

Facies Prediction at Wells

Data courtesy of



Use Case: Results

97.5%98.3%95.5%

Most probable facies distribution along traverse



Use Case: Results

Probability facies of interest



Use Case: Results

Subvolume detection 



• Dry well - No prediction nearby

• Weak producer - Small, thin reservoir

• Halliburton #1 Neaves - Small (5 acres) reservoir

• Halliburton #1 Neaves – Secondary production

• Adjacent compartment

• Connection 

• Based on study results, proposed location:

• 2 possible targets (probability, thickness, area)

• Reservoir found

Use Case: In-Situ Validation

WEAK
PRODUCER

HALLIBURTON
#1 NEAVES 5 ACRES

24 ACRES

DRY WELL

“The study results were accurate. The well found a good pay facies at correct depth, with 
double the pay zone thickness and an increase in porosity from 10% to 17%.” 

Monte Meers, Project Manager Oil-filled packstone TWT Thickness Map



Conclusion

• Bring new potential about seismic data reliability for prediction of reservoir 
facies away from wells

• A classification method is good, if it:
• can account for data of different nature,

• requires as few parameters as possible at the beginning of the process,

• is applicable to large volume of data, and in relatively high dimensional spaces,

• can discover classes of any value range, and isolate noise and outliers from data,

• is not sensitive to initialization, and order of training set point presentation,

• leads to a reliable interpretation of results for subject matter experts.
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