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Abstract 

The occurrence and properties of natural faults in fractured reservoirs are key in determining reservoir flow properties, and 

thereby the success of geothermal energy or oil and gas production from these reservoirs. The quest for exploiting geothermal 

reservoirs in sedimentary basins with relatively low geothermal gradients has drawn attention to temperature anomalies 

associated with deep fractured reservoirs. However, low permeability remains a major concern, as the likelihood that fractures 

are closed or sealed increases with increasing depth. While the E&P industry has been successful in developing tight fractured 

reservoirs by hydraulically stimulating many horizontal wells, different economics of geothermal projects requires a different 

approach that involves optimization of doublet placement to achieve optimum flow conditions. Existing subsurface data 

acquired for oil and gas production can be of great value in such doublet optimization approach. Exploration for new geothermal 

sites will particularly benefit from site-specific data on fault-related factors like damage zone fracture density, connectivity and 

permeability. In many cases, such data is lacking during geothermal exploration, but generic relations can be used to constrain 

typical fault zone architectures, spatial distribution of permeability and characteristics of damage zone fracture populations. Site-

specific characteristics of fault and fracture populations can be determined using seismic surveys, outcrop analogues, core 

material, and laboratory experiments.  

In this study, flow and performance of geothermal doublets is modeled for a potential geothermal play in a fractured Dinantian 

carbonate platform near Luttelgeest in the North of the Netherlands. Fault populations in the carbonate formation were analysed 
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using 2D and 3D seismic data. Distributions of fault azimuths, dips and lengths are derived from the interpretation of 2D and 3D 

seismic. These distributions can be used to determine the preferred orientation of faults and apply scaling relations to describe 

bulk permeability that incorporates specific fault populations from the seismic surveys, typical fault zone architectures from 

outcrops, and fracture permeability from laboratory experiments. A bulk permeability model is used that describes non-isotropic 

permeability of individual fault zone using 3D permeability tensors for fault core, damage zone and surrounding intact reservoir 

matrix, and fractured reservoir permeability by volume averaging the contribution of fault zones or fractures based on the 

frequency distribution of fault dimensions. The approach ensures that data available prior to drilling, as well as uncertainties are 

taken into account in doublet performance assessment. Bulk permeability is represented by multiple uniform fracture sets with 

different orientations in a semi-analytical model for performance assessment of geothermal doublets to analyse the evolution of 

temperature and pressure for different doublet configurations. The geothermal power for doublet systems consisting of a surface 

heat exchanger, and multiple injection (“injector”) and production (“producer”) wells that are placed in the fractured Dinantian 

carbonates was analysed. Factors such as preferred orientations and permeability of faults and fractures, local stress field, and 

injection/production rates interact to determine the geothermal power of such doublet systems so that optimum placement of 

geothermal doublet systems can be determined. Optimization of geothermal doublet design can be performed based on multiple 

model realization based on data of fault and fracture populations from local seismic surveys, outcrop analogues and 

experiments. Such optimization helps de-risking geothermal exploration and exploitation, as it outlines preferred placement of 

doublets in terms of optimum flow and cold water breakthrough. 
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FAULTS AND FRACTURES CONTROL GAS FLOW
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A POTENTIAL GEOTHERMAL TARGET?

Dinantian carbonate platforms and 

major faults in the Netherlands 

(Veldkamp 2016; Lipsey et al. 2016)

Dinantian platform carbonates

Population of natural fractures

Temperature anomaly (LTG-01)

2D & 3D seismics

Well logs (LTG-01)

Convection hypothesis

study area

LTG-01: 4355-5123 m.
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DOUBLET PERFORMANCE MODEL WORKFLOW
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SEISMIC CHARACTERIZATION OF FAULTS

Fault detection based on 

2D & 3D seismics

New de-noising algorithm

(non-local means)

Autotracking of faults

Characteristics of fault

population dependent on 

de-noising and 

autotracking parameters

Uncertainty of seismic fault

characterization can be

taken into account

non-local means method

IMAGE
Mapped fault in Dinantian carbonate platform around LTG-01 based on a new 

de-noising non-local means algorithms (Carpentier et al. 2016)

2D & 3D seismic surveys

map view of faults

vertical section with base 

platform & bounding fault
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FRACTURED RESERVOIR PERMEABILITY MODEL

Fault permeability model: (1) layered

reservoir, (2) fractured damage zone, (3) 

fault core

Fractured reservoir permeability model 

incorporating population of fault zones

3D permeability tensor based on arithmetic/ 

harmonic mean of matrix & fault

permeability

Bulk permeability (summation of NZ faults):
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4 SCENARIOS DOUBLET DESIGN & PERMEABILITY
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RESERVOIR RESPONSE TO DOUBLET OPERATION
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FURTHER OUTLOOK

fault 

scaling 

law

Improved incorporation of fault populations

from seismic characterization

Fix cross flow in flow simulations (cf. current 

internship Joris Tholen)

Better constraints on fractured reservoir 

permeability

Practical scenarios for doublet designs 

(placement & operation)

Trade-off between fault & fracture reactivation 
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Workflow can be used to mitigate problematic 

induced seismicity by incorporating location of 

large faults, mapping stress changes and 

analyzing slip tendency of large faults
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CONCLUSIONS

Faults & fractures are critical in determining anisotropic permeability and 

performance of doublets in fractured reservoirs such as the Dinantian Carbonates in 

northern Netherlands

Data from geological (outcrop) and geophysical (seismic) characterization need to be 

incorporated in fractured reservoir permeability models to improve upfront predictions 

of doublet performance

Optimum performance of geothermal doublets can be determined by simulating

pressure and temperature evolution for different scenarios of doublet designs and 

fractured reservoir properties, also capturing data uncertainty (doubletCalc2D)

The geomechanical response of reservoirs to doublet operation can change flow 

behavior and performance of doublets by changing flow properties of faults and 

fractures

Mitigation of problematic induced seismicity can be performed by mapping 

reservoir stress conditions based on simulations, and ensuring doublet operation will 

minimize slip tendency of large faults 
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