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Abstract 

 

Sequence stratigraphy is not THE answer in optimizing the selection of horizontal targets in shale plays. But it is an extremely 

useful, and oftentimes necessary, tool that should be used to assess reservoir intervals and improve geosteering.  

 

Sequence stratigraphy can aid subsurface geologic interpretation and evaluation in numerous ways. It  

1) provides an increased understanding of depositional controls on reservoir vs. non-reservoir facies,  

2) promotes better well-log correlations,  

3) aids in reservoir prediction, 

4) offers a framework for data integration,  

5) guides sample collection from core,  

6) delivers better reservoir flow models and volumetric calculations,  

7) helps in choosing and staying within the target zone, and  

8) furnishes input for completion design.  

 

This talk focuses on optimizing horizontal targeting in shale reservoirs based on sequence stratigraphic concepts. Examples from 

the Marcellus, Eagle Ford, Niobrara, Mowry, and Avalon shales reveal the significance of assessing reservoir quality and 

mechanical properties within a systems tract and parasequence framework.  

 

mailto:jmay.kcrossen@gmail.com


The best targets typically comprise load-bearing grains and a brittle framework, plus contain large, interconnected pores. When 

sediment influx is dominantly extrabasinal (detrital), load-bearing grains are delivered during highstands and lowstands. 

Connected interparticle pores in these systems tracts often yield the best hydrocarbon storage and deliverability. In contrast, the 

basal condensed section in extrabasinal systems may be the most organic-rich interval, but unconnected organic-matter pores 

frequently dominate, typically yielding lower flow rates and even creating drilling problems. In contrast, when input is largely 

intrabasinal (biogenic), late transgressions and condensed sections commonly yield microfossil-rich, brittle deposits. 

Interconnected interparticle pores and natural as well as induced fracturing usually make these systems tracts the optimum 

targets. 
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Sequence Stratigraphy

• provides another tool in your “tool box”

• promotes better well-log correlations

• offers context for depositional controls on 

reservoir vs. non-reservoir

• guides data collection from core

• provides framework for data integration

• delivers better reservoir models & volumetrics

• helps select & stay in horizontal target

• furnishes input for completions



from Alzahabi et al., 2014

from Nester 

et al., 2014

Mudrocks are Heterogeneous –
Beware of Averages!



Variable Grain Sizes

mudrock = > 50% of grains less than 62.5 microns

from Blatt, Middleton, & Murray 1980

mudshale

siltstone

clayshale

2/3 1/3

mudstone claystone

silt:clay
ratio



Variable Lithologies

euxinic 

basin

extrabasinal (deltaic outflow or carbonate-margin shedding)  

after Bhattacharya & MacEachern, 2009 sediment-gravity flow 

hypopycnal plume

pycnocline

after D’Agostino, 2007

intrabasinal (skeletal & organic matter)

pycnocline



Extrabasinal Material
detrital carbonate

detrital clay

detrital quartz



Intrabasinal Material - Skeletal
radiolaria

diatoms

www.bio.miami.edu/

dana/pix/radiolaria.jpg200 mm foraminifera

www.eukaryoticmicrobe.blogspot
.com/2012/1/diatom-essay.html

2 mm

coccolithophores

www.noc.soton.ac.uk/

.../tt/eh/cellpics.html 



Intrabasinal Material - Organic

various shapes 

& sizes

55 m, Monterey Bay

pellets

organo-minerallic aggregates

(marine snow/carbon rain)

0.1 mm

Mowry Shale

0.5 mm

www.whoi.edu/oceanus

Haynesville Shale

from Spain & 

Anderson, 2010



Variable 

Pore Types, 

Sizes, &

Connectivity

Intraparticle PoresInterparticle Pores

Organic Matter 

Pores

Mixed

OM

IntraInter

from Loucks

et al., 2012



Variable Mechanical Properties
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& Young’s 
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from Moreland & Broacha, 2010



Mudrocks are Heterogeneous –

BUT Not Random

• grain size

• mineralogy

• lithologic components

• lithofacies

• organic-matter types & content

• porosity (types & sizes) and permeability

• hydrocarbon saturation

• rock mechanics (strength & brittleness)

• seals & fracture barriers



Sequence Stratigraphy & Targeting

provides the framework for deciphering 
heterogeneity in unconventional reservoirs

• What controls variations in lithology, fabric, 
porosity, permeability, strength (YM), & 
brittleness (PR)?

• What part of the section should you target?  

• How might reservoir & mechanical properties 
change vertically & laterally?

• What could be the areal extent of the target zone?

• What part of the section could form pressure 
seals &/or fracture barriers? 



Shale Target Selection

• best reservoirs = intervals with load-bearing 

(strong), brittle framework AND large 

interconnected pores (and HC saturation)

• when input dominantly detrital (extrabasinal)

➢ load-bearing grains delivered during highstands

&/or lowstands

➢ both siliciclastic & carbonate systems

• when input dominantly biogenic (intrabasinal)

➢ load-bearing skeletal grains dominate (low dilution) 

during late transgression to condensed section

➢ brittle framework + organic material 



Targeting Optimization

sequence stratigraphic framework of  

reservoir & mechanical properties

➢ Marcellus (extrabasinal dominated)

➢ Eagle Ford (extrabasinal influenced)

➢ Mowry (extrabasinal influenced)

➢ Niobrara (intrabasinal dominated)

➢ Avalon (Leonard) (mixed extrabasinal & 

intrabasinal)



modified from Lash, 2010

Marcellus Sequence Stratigraphy 
(Extrabasinal Dominated)
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Marcellus Targeting 2006-2008
initial wells in high TOC

section = low IP’s

later wells slightly shallower 

(low TOC section) = higher IP’s

from Zagorski, 2015

sequence boundary



Marcellus Targeting

initial wells in high TOC

condensed section
better wells in early 

highstand detrital section

organic matter & 

intraparticle pores
organic matter & 

interparticle pores

2m2m



Eagle Ford 

Sequence 

Stratigraphy

(Extrabasinal

Influenced)

after Donovan et al., 2015



Eagle Ford Targeting

Buda

Lwr

Eagle 

Ford

Upper

Eagle 

Ford

Austin

Chalk Condensed Section: 

68% calcite, 12% quartz,

3% feldspar, 1% pyrite, 

14% clay

from Hentz & 

Ruppel, 2011

sequence boundary



Eagle Ford Targeting

Buda

Lwr

Eagle 

Ford

Upper

Eagle 

Ford

Austin

Chalk Highstand: 50% calcite, 

19% quartz, 8% feldspar,   

3% dolomite, 2% pyrite, 

16% clay

Condensed Section: 

68% calcite, 12% quartz,

3% feldspar, 1% pyrite, 

14% clay

from Hentz & 

Ruppel, 2011

sequence boundary



Components & Fabric Affect Eagle Ford 
Targeting & Reservoir Properties

Highstand Systems Tract (detrital influence)

50% calcite, 19% qtz, 8% feldspar, 3% dolomite, 2% pyrite, 16% clay

Condensed Section (sticking problems)

68% calcite, 12% quartz,3% feldspar, 1% pyrite, 14% clay

organic matter &

interparticle porosity

organic matter porosity



Mowry

Sequence 

Stratigraphy

(Extrabasinal

Influenced)
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Mowry Sequence Stratigraphy

& Reservoir Quality

2mm

Early HST Late HST

2mm

silt rich w/ 

abundant 

organic matter 

& interparticle 

pores 

(sheltered by 

silt)

clay rich w/ few 

organic matter 

& interparticle 

pores



Mowry 

Sequence 

Stratigraphy &  

Geomechanics

Lower

Mowry

Middle

Mowry

Upper

Mowry

closure pressure 

(minimum 

horizontal 

strength)

after T. Olson
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SB/MRS

Niobrara 

Sequence 

Stratigraphy

(Intrabasinal

Dominated)
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Niobrara Lithologies & Targeting
Transgressive to Condensed Section 

reduced detritus + oxygenation 

created bioclastic-dominated rock 

(brittle chalk) w/ low organic matter 

Boreal

(cold)

Tethyan

(warm)

mixing

after Roberts & 

Kirschbaum, 1995



Sea-Level Highstand
deltaic regression & detrital influx + 

low oxygenation created marl 

w/ high organic matter 

after Roberts & 

Kirschbaum, 1995

sill

Boreal

(cold)

Tethyan

(warm)

Niobrara Lithologies & Targeting



Niobrara Pore Types & Target Selection

open interparticle pores

TST to CS Chalk HST Marl

elongate organic matter pores

3mm
3mm



Petrophysics & Target Selection

• pore size & shape vary with 
lithology & maturity

• pore size seen by NMR is 
function of pore shape 
(large-pore porosity may be 
underestimated)

• relaxivity of organic matter 
interferes with capturing 
organic pore data

diameter = x

diameter = 3x

equiv. circle diam. = 3X

width = x

equiv. circle diam. = 3X

Relaxation

TimeNMR Log

after T. Olson
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Leonard 

(Avalon) 

Sequence 

Stratigraphy

(Mixed 

Extrabasinal 

&

Intrabasinal)

modified from www.corelab.com/ 

irs/studies/avalon-wolfcamp-shale

HST 

LST  

LST  

HST 

3rd

Order

LST 

HST



Avalon (Leonard) Facies

quartz

turbidites

calcareous

turbidites
debrites

slide

blocks
slumps laminated

mudstone



Facies Control on Reservoir Properties
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after A. Noack



Facies Control on Reservoir Properties
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Facies Control on Reservoir Properties
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Facies Control on Reservoir Properties
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Facies Control on Mechanical Properties
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Facies Control 

on Mechanical 

Properties
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siliceous 

mudstone
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Avalon (Leonard) Shale Targeting
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Conclusions: Sequence Stratigraphy & 

Horizontal Targeting

• not “THE” answer, but a useful (necessary?) tool

• increased understanding of depositional 

controls on reservoir vs. non-reservoir 

• framework for data selection and integration 

• better correlation and mapping of targets

• aids reservoir modeling & economic evaluation 

• helps with selection of & staying in best zone

• additional input for completions




