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Abstract 
 
An accurate understanding of movable fluid distribution and permeability are crucial for the successful exploitation of tight oil reservoirs. 
However, tight oil reservoirs typically show a wide pore size distribution with pore sizes ranging from several nanometers to several hundred 
microns. Now existing permeability estimation parameters are no longer suitable for tight sandstones. Therefore, this article explores the 
applicability of nuclear magnetic resonance (NMR) on movable fluid distribution and the permeability estimation in tight sandstones. Six sets 
of NMR experiments are carried out on samples from the Chang 6 Formation in Ordos Basin. The first one is performed on fully water 
saturated plugs to obtain the fluid distribution. The remaining five are conducted on the same plugs after centrifuged at different centrifugal 
force to determine movable fluid distribution. In order to further confirm the pore-throat morphology occupied by movable fluid, we carry out 
scanning electron microscopy on core slices. Based on the statistics of movable fluid distribution, a modified Coates model is developed for 
permeability prediction in tight sandstones. In terms of the study, the following conclusions are arrived at. The optimum centrifugal pressure 
for the Chang 6 Formation is 208 psi and pores with radii less than 0.1 μm show no obvious difference with throats. Movable fluid is mostly 
controlled by throats with radii less than 1 μm, especially throats radii ranging from 0.3 μm to 1 μm. Movable fluid is stored in pores 
distributed around the right peak of the bimodal distribution with radii ranging from 10 μm to 100 μm. These pores are residual interparticle 
pores and dissolution pores. Four types of pore throat combination are identified using scanning electron microscopy, among which shrinking 
throats and flaky throats are common. A formula describing permeability based on the Coates model for a tight sandstone oil reservoir derived 
from the results matches the Formation’s permeability with an excellent correlation factor of 0.90 when the value in the Coates model equals 
19. Petrophysical characterization by NMR technique provides an effective approach to better understand pore throat structures and storage 
capacity of tight oil reservoirs. 

 
 
 
 



Introduction 
 
With the depletion of conventional oil reservoirs and advances in hydraulic fracturing techniques, tight oil reservoirs are now considered an 
important alternative resource (EIA, 2013). An understanding of flowability of tight oil reservoirs is essential for successful exploitation. 100 
psi is often chosen as the optimum centrifugal force for conventional sandstones to determine the movable fluid and the bound fluid (Zhou et 
al., 2011; Ohen et al., 1996). However, the applicability of 100 psi for tight sandstones is still an open question; at the same time the 
applicability of the permeability estimation based on NMR need to be researched (Coates, 1999). 
 

Experimental 
 
Properties of six subsurface samples can be seen in Table 1. A PANalytical diffractometer was used to acquire the relative mineral percentages, 
estimated by a semi-quantitative method. It was performed on powdered tight sandstone at room temperature (293.15 K) under a relative 
humidity of 66%. Fresh sections and polished samples were coated with gold and then observed by a FEI™ Quanta™ 200F SEM (20 KV, High 
vacuum mode). The SEM used in this study provides a resolution of 1.2 nm and a magnification of × 25 k – 200 k. NMR measurements are 
here briefly described (Figure 1). First, six core samples for NMR measurements are dried at 378.15 k for 24 hours. Then the core samples 
were weighed and measured (length and diameter). Second, samples are evacuated for 2 hours and then saturated with distilled water under 25 
MPa for 48 hours. The saturated weight is recorded. The water porosity of each core is calculated using the dry weight, the wet weight, and the 
volume of the sample. Third, raw NMR data of water-saturated cores are performed. Fourth, five sets of NMR experiments are conducted after 
each centrifugation. The weight of each core sample is measured after each centrifugation. Fluid balance in each sample was obtained by 
keeping the core samples still for ten minutes before each NMR measurement. Five centrifugal pressures were used: 21 psi, 84 psi, 208 psi, 418 
psi, 696 psi. 
 

Methodology 
 
The centrifugal pressure under different speed of revolution can be expressed as: 
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where Pcentri is the centrifugal pressure, MPa; △ρ is the density difference of air and water, g/cm3, n is the speed of revolution, r/min; R is the 
radius of sample, cm; L is the length of sample, cm. The capillary is expressed as: 
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where Pc is the capillary pressure, MPa; σ is the interfacial tension, mN/m; θ is the contact angle, °；r is the pore radius, cm. Therefore, 
centrifugal radius under different speed of revolution can be calculated based on Equation (1) and Equation (2), namely 1 μm, 0.3 μm, 0.1 μm, 
0.05 μm, 0.03 μm. 
 
The movable fluid after each centrifugation can be considered as movable fluid controlled by two corresponding centrifugal pressures. The 
optimum centrifugal force suitable for tight sandstone reservoirs can be determined by using the linear regressions of (a) the curve showing the 
cumulative percentage of movable fluid vs. gas permeability, and (b) the curve showing gas permeability vs. the percentage of movable fluid at 
each centrifugal stage (Table 2).  
 
Based on the Timur equation, Coates conducted a large number of experiments and developed a model, called the Coates model, to predict 
permeability using NMR porosity and the percentage of movable fluid. Coates model can be described by the following equation: 
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Where KC is the permeability (10-3 μm2) predicted by Equation (3), φ  is the NMR porosity (%), FFI is the movable fluid percentage and BVI is 
the bound fluid percentage, which can be determined based on the optimum centrifugal force, CC, which is a constant related to the reservoir 
formation. Therefore, CC is the only variable that should be determined to quantify this equation for the Chang 6 Formation. 
 
Previous study demonstrates that SDR always overestimates the permeability and is suitable for sandstone with good sorting and high 
permeability. The SDR (Schlumberger Doll Research) model can be expressed as follows: 
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Where KS is the permeability（10-3 μm2）predicted by Equation (4), φ  is NMR porosity (%), 2gmT  is the geometric mean of NMR transversal 
relaxation time, CS is a constant related to formation. The linear regressions between Ka and 4 2

2gmTφ  were used to validate the SDR model for 
the Chang 6 tight oil reservoirs. 
 

Conclusions 
 

(1) Four throat types were observed (Figure 1), which are necking throats, shrinking throats, flakey throats, and tubal throats. The radii of 
the four throat types are mainly ranging in nanoscale, resulting in the creation of a large amount of pores with a large pore throat ratio 
being present in the tight sandstone reservoir. 
 



(2) The optimum centrifugal force for the Chang 6 Formation is 208 psi (Figure 2). More than 70% of movable fluid is controlled by 
throats which have a radius lower than 1 μm. Throats with radii between 0.3 μm and 1 μm are the most common ones. The threshold 
radius through which movable fluid would flow is 0.1 μm. Pores and throats show no movement of fluid when pore radius is less than 
0.1 μm. Based on the movable fluid distribution (Figure 3), the peak is around dozens of microns which indicates that movable water is 
mainly stored in residual interparticle pores and the dissolution pores. 

 
(3) The applicability of the Coates model and the SDR model on tight oil reservoirs are discussed based on a study of core samples from 

the Chang 6 Formation. An accurate estimation of the permeability for the Chang 6 Formation is presented based on the Coates model 
(Figure 4). 𝐶𝐶 is much larger in tight sandstones. The SDR model (Figure 5) is not suitable for the estimation of permeability in tight oil 
reservoirs. 
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Figure 1. SEM results, showing the four types of pore throats. 



Figure 2. Centrifugation results. 
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Figure 3. Movable fluid distributions and movable fluid percentage distributions for samples. 
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Figure 4. The regression analysis between ( )4 2
 
( )FFI
BVI

φ and 𝐾𝑎. (m represents ( )4 2
 
( )FFI
BVI

φ , n represents Ka) (Coates Model). 
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Figure 5. The regression analysis between 4 2
2gmTφ and Ka. (m represents 4 2

2gmTφ , n represents Ka) (SDR Model). 
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Table 1. XRD results, porosity and permeability of sample. 

 

 

 

 

Table 2. The linear regression analysis results between movable fluid percentage and gas permeability. 




