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Abstract 

From reducing uncertainty in well correlations to identifying target zones with low and high reservoir quality, chemostratigraphy has 
demonstrated to be an excellent tool in geosciences. Chemofacies, an analog of lithofacies, are characterized by a signature composition of 30 
elements obtained with X-Ray fluorescence (XRF) spectroscopy. However, a standard definition of the chemofacies is ambiguous due to the 
different techniques available for clustering analysis. We aim to create a methodology for clustering Mississippian strata with a similar 
elemental composition in the Anadarko Basin. The chemofacies are used for well correlations, paleoenvironment interpretations, identify 
landing zones and refine a sequence stratigraphic framework.  

To address the issue of chemofacies clustering ambiguity, we used different unsupervised learning techniques in over 1000 analyses of XRF 
spectroscopy, acquired for Mississippian strata in 4 cores located in The STACK Play, Oklahoma. We lead with different questions to define a 
methodology for defining the chemofacies. The first issue we deal with is the selection of the elements to be clustered. Sometimes chemofacies 
are based only on the elements that have been used in the literature as a proxy for any geological parameter. For example, Sr, Mg and Ca as 
carbonates proxies. But with the objective to incorporate information that might escape traditional geological inference, we also used principal 
component analysis (PCA) as a preprocessing step before clustering the elements. The next challenge we address is to analyze which clustering 
algorithm can better represent Mississippian strata. We compare the results of Hierarchical cluster analysis (HCA), K-means, Self-organizing 
map (SOM), and Density-based spatial clustering (DBSCAN). Then, we used PCA to geologically constrain the clusters and define the 
chemofacies. Finally, the chemofacies were compared with thin sections and well logs. The analysis we performed allowed us to define the 
most appropriate workflow that honors the geology embedded in the lithofacies. The selection of unsupervised learning algorithm is based both 
in the resulted chemofacies and the clustering objectives. We propose that the segmentation of massive gravity flows facies from hemipelagic 
facies can be achieved with two clusters. However, more clusters are necessary if the objective is to identify lower and higher reservoir quality 
intervals within these two main clusters. 
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Figure 1. Location, facies classification (legend in Figure 2), and gamma ray response of the four cores 
used in this research. 
 

Figure 2. Core A elemental profile with gamma ray (CGR) 
profile and facies classification. Elemental composition 
information is based on hand-held X-Ray fluorescence 
data. This core contains 300 samples at 1.0 ft resolution. 
Three formations are present in this core, from bottom 
to top: Woodford shale, Osage, and Meramec formation. 

Chemostratigraphy has been used as a key tool in geoscience for the identifi-

cation of target zones with low and high reservoir quality. By grouping zones 

with similar elemental composition (defined as chemofacies) as determined 

by X-Ray fluorescence (XRF) spectroscopy, the uncertainty in well correlations 

can be reduced.

However, the challenge remains in obtaining a unified and unambiguous 

definition for chemofacies, since different clustering algorithms produce dif-

ferent results. To address these different clustering results, we have used dif-

ferent unsupervised learning techniques in over 1,000 analyses of XRF spec-

troscopy acquired for Mississippian strata in 4 cores from the STACK play, 

Oklahoma. Our analysis resulted in the identification of chemofacies that can 

be used for well correlations, paleoenvironmental interpretations, identifica-

tion of landing zones, and refining sequence stratigraphic frameworks. 

We started by selecting the elements to be clustered based on the informa-

tion provided by principal components analysis (PCA). This guarantees our 

methodology will consider all the available chemical information, and not just 

the one commonly associated to geological proxies.  We tested different clus-

ter algorithms: hierarchical cluster analysis (HCA), K-means, and density-based 

spatial clustering (DBSCAN) using the principal components that represent 

80% of the data variance.  We then analyzed which cluster algorithm better 

represent Mississippian strata from a geological standpoint. Finally, the 

chemofacies were compared with information from thin sections and well 

logs. This approach has allowed us to define an appropriate workflow that 

honors the geology embedded in the lithofacies. 



Figure 3. List of proxies used for clustering analysis and their 
paleoenvironment interpretation.

Figure 4. Elbow method used to choose the appropiate number of 
clusters.  
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Figure 5. Results of clustering 
analysis using k-means for 
different input data. Raw is the 
original data from the HHXRF; 
scaled refers to  the Z-score 
scaled data;  scaled-PCA are the 
data resulted from principal 
component analysis; and  
scaled-proxies are the data only  
with the selected proxies. 
Every set of input data (raw, 
scaled, scaled-PCA, 
scaled-proxies) is used with 
all the measurements in the 
core (left) and only the 
measurements in the upper 
bench (right). 
Colors in every column represent 
the same cluster. However, 
colors in panels Raw, Scaled, 
Scaled-PCA, and Scaled-Proxies 
are not correlated.

Figure 6. Results of clustering 
analysis using k-means, Ward, and 
DBSCAN for two different input 
data (scaled and scaled-PCA). 
Scaled is all the Z-score scaled data 
scaled-PCA refers to the data 
resulted from principal 
component analysis. For this 
comparision of methods all the 
data from core A was used.
Colors in every column represent 
the same cluster. However, colors 
in panels Raw, Scaled, 
Scaled-PCA, and Scaled-Proxies 
are not correlated.
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Figure 7. Thin sections used to compare the results of the clustering analysis from core A. The letter on the thin section corresponds to the letter on the Figures 5 and 6. 
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Figure 8. Mineralogical composition used to 
compare the results of the clustering analysis. 
Note that the scale from mineralogical composition 
is not in the same scale than the lithological 
description or the HHXRF data.  
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There is not a standard method for clustering  XRF data that can be 
applied for every scenario.

Defining the clustering objective must be the  first step in any 
unsupervised learning analysis.

Scaling the data is an important processing step when dealing applying 
machine learning techniques. 

Segmenting the data in similar rock types helps in the detection of 
high and low reservoir quality rock within and specific interval.

Using all the variables have similar results than when using selected
elements (proxies) if the elements are selected properly.

Principal component analysis is useful when trying to identify large 
changes in the data  (e.g. different formations).

 

Data normalization is a very important initial step that 
sometimes is overlooked by geoscientist practitioners. 
Without normalization, features with larger scales (e.g. 
ppm of Ca) can dominate features with smaler scales and 
variance (e.g. ppm of Mo). This can cause the clusters to be 
completely determined by very few features, which is usu-
ally not desired.

Using all the variables have similar results than when using 
selected elements (proxies) if the elements are selected 
properly.  While using principal components makes it 
easier to identify the change between formations, using 
the scaled elements or proxies makes it easier to identify 
the changes in lithology.

We note a visual correspondence between the cluster re-
sults of K-means and Ward. Although not completely dif-
ferent from the first two, DBSCAN clusters present a slight-
ly different charactheristic, indicating that the method is 
sensitive to different aspects of the data. 

Unlike K-means and Ward clustering methods, DBSCAN 
automatically assigns outliers for samples lying too far 
from the others. This can help the interpreter find patterns 
in the data that could be overlooked when using only 
more traditional methods (such as K-means).

In this study, we focused on the use of unsupervised learning 
techniques to compare the different clustering results. We 
performed a qualitative analysis between the clusters based 
mostly on our expertise and geological knowledge.  We 
intend to improve our analysis using more quantititative met-
rics (such as the computation of Mahalanobis distance within 
clusters)

For our next steps, we plan to use supervised learning meth-
ods and evaluate whether the prior labeling of geologically 
defined facies improves our classification results. 

The results we present here are not extensive and can likely 
be improved if more data are available. 
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