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Abstract

Nowadays, there is a significant number of reservoir models that are purely constrained to numerical reservoir perception. Moreover, such
models neglect the influence of geological events which are essential in characterizing and modeling carbonate reservoirs. This mentioned
approach leads to conceptual errors because ideally, a reservoir model would enable heterogeneities predictability and mitigate reservoir-

modeling uncertainty. The objective of this paper is to show the results obtained from an integrated reservoir rock-typing characterization
process for its subsequent implementation into reservoir models.

This multi-disciplinary study emerged as the fundamental pillar to model the Lower Cretaceous Thamama Group in a major Oil Field in the
Arabian Plate. This rock-typing approach intends to define rock types (referred as Static Rock Types (SRTS) in this paper) which result from
the combination of two sub-processes, the Petrophysical Synthesis and the Geologic Synthesis. The latter aims to define Facies groups by
relating depositional facies and their associated diagenetic processes. On the other hand, the Petrophysical Synthesis proposes to define
petrophysical groups based on a combination of similar petrophysical characteristics. Ultimately, this rock-typing approach enables generating
Static Rock Types defined by the reconciliation of related geologic and petrophysical patterns. The data inventory for this study includes
detailed Core Description, RCA, SCAL, and Log data. Applying consistent data quality validation, which allows implementing a robust
workflow combining deterministic methods and machine learning supported algorithms for data analysis.

Static Rock Types (SRT) were classified through distinctive sets of geologic and petrophysical groups. This classification resulted in four
SRTs. SRT1 exhibiting enhanced reservoir properties product of early diagenesis, SRT2 is dominated by neutral diagenetic processes that
preserve reservoir properties, SRT3 and SRT4 are both associated to late diagenetic property reducing processes that distort arrangement of
minerals and pore structure. The major achievement of this rock-typing approach resumed in the integration of the Geology and Petrophysics.
This integration enable finding significant evidence to understand reservoir properties at depositional stage, properties alteration product of
diagenetic processes and reservoir dynamic behavior links to a geologic concept. This rock-typing approach changes the traditional practice,



formerly used to model this particular reservoir, which was limited only to the classification of petrophysical patterns; instead, this approach
allows associating a particular petrophysical pattern to a singular geologic facies, feature or event.

Ultimately, via the integration of dynamic and static data, reservoir models become more predictive. Similarly, the basis of the rock-typing
approach presented herein brings together a solid static understanding in order to delineate the origin of particular reservoir dynamic behaviors.
This fit-for-purpose approach built from the premise of integration provides a complete basis for reservoir simulation, management, and
forecasting; and at the same time contributes reducing reservoir uncertainties by means of enhancing heterogeneities predictability, dynamic
flow understanding, which all combined yields organically into optimized field development strategies.
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Abstract: Nowadays, there Is a significant number of reservoir models that are purely constrained to numerical reservoir perception. Moreover, such models neglect the
Influence of geological events which are essential in characterizing and modeling carbonate reservoirs. This mentioned approach leads to conceptual errors because
ideally, a reservoir model would enable heterogeneities predictability and mitigate reservoir-modeling uncertainty. The objective of this poster is to show the results
obtained from an integrated reservoir rocktyping characterization process for its subsequent implementation into reservoir models. This multi-disciplinary study emerged
as the fundamental pillar to model the Lower Cretaceous Thamama Group in a major Oll Field in the Arabian Plate.

Ultimately, via the integration of dynamic and static data, reservoir models become more predictive. Similarly, the basis of the rock-typing approach presented herein
brings together a solid static understanding in order to delineate the origin of particular reservoir dynamic behaviors. This fit-for-purpose approach built from the premise
of integration provides a complete basis for reservoir simulation, management, and forecasting; and at the same time contributes reducing reservoir uncertainties by
means of enhancing heterogeneities predictability, dynamic flow understanding, which all combined yields organically into optimized field development strategies.

DEPOSITIONAL FACIES SCHEME

- Facies Associations based on depositional environments

- Higher K contrast is controlled by grainstone shoals

- Best reservoir facies are identified at sequence boundaries

Different facies observed on reservoirs from grain-dominated to mud-
dominated facies
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CONCEPTUAL MODEL; DEPOSITIONAL ENVIRONMENTS
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- Reservoir A: distal echinoid

dominated facies, development
of in-situ algal clusters within the
mid-ramp, transition into shoals.

- Reservoir B: algal clusters

disappeared from mid ramp,
lesser grain supported lithofacies
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ROLE OF HETEROGENEITIES
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Conceptual Model: Rerservoir A iIs made up of facies dominated by Lithocodium-Bacinella algae in an array of coarse grained floatstones and rudstone and finer grained but similar
composition packstones and grainstone textures with peloidal ‘matrix’, lastly Wackestones are rare; nevertheless when found they are inferred to be the results of compacted peloidal
packstone/grainstone. The concept model shows sequential evolution of distal echinoid dominated facies at the bottom of the sequence, followed by the development of in-situ algal clusters
mostly with in the mid-ramp, then transitioning into high energy grain supported lithofacies capped by lagoonal lithofacies. Reservoir B is dominated mainly by Cyclammina, it is particular to be
higher In textural variablility of the sediments (from wackestone to grainstone) when compared to Reservoir A, and Algal Skeletal Rudstone is the same facies in both reservoirs in terms of
texture. The concept for this reservoir differ from the upper reservoir as in this case the algal clusters disappear from the mid-ramp and high energy grain supported lithofacies are capped by
lagoonal lithofacies (green algae). Observation data from both reservoirs provides early evidences for the association of lithofacies to particular permeability contract and consequently related
to preferred dynamic contribution intervals. Both reservoirs exhibit a distinctive link of the highest permeability contract to Skeletal Peloidal Grain dominated facies, even when Reservoir B Is

eSS

neterogeneous than Reservoir A.

DIAGENETIC FACIES WORKFLOW
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Methodology: This is the main geologic component of the rocktyping approach. This session entails the outcome from reservoir characterization and preliminary evidence found from data
analysis. The output from this exercise are groups of rocks associated by depositional lithofacies and diagenetic overprint. The initial stage in this process concentrates in looking into the
depositional facies concepts, diagenetic processes, and reservoir properties to define initial groups designated as “Depositional Facies”. Depositional concepts have already been designated
for each reservoir, having in common a smooth transition from mid-ramp deposits to high energy shoals ending in lagoon environment. Paragenetic sequence were observed to define whether
reservoir properties were affected by different diagenetic phases. As per in Reservoir A, the most important factors are specific to early stage near surface eogenesis and intermediate burrial
stage. The first is characterized by precipitation of fringing cement, dissolution and leaching of grains, and microfracturing of Lithocodium-Bacinella crystals leading to porosity enhancement.
And the second is related mostly to chemical compaction resulting in solution seams leading into reduction of permeabllity. The heterogeneity in this reservoir makes it more likely to be
Impacted by diagenesis, yet primary reservoir properties are preserved overall. Reservoir B Is also mainly impacted by early stage near surface eogenesis and intermediate burrial stage, and
also late stage mesogenesis. An at early stage porosity iIs enhanced by the dissolution of crystals and leaching of cement. Other intermediate to late processes including mechanical and
chemical compaction and precipitation of saddle dolomites together reduced porosity. Reservoir B primary reservoir properties are mostly impacted by reducing processes as most of this
reservoir in partially in the transition zone.

Petrophysical Synthesis
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This roc

K-typing approach intends to define rock types (referred as Static Rock Types (SRTs)) which result from the combination of two sub-processes, the Petrophysical Synthesis and the

Geologic Synthesis. The latter defines Facies groups by relating depositional facies and their associated diagenetic processes. On the other hand, the Petrophysical Synthesis proposes to
define petrophysical groups based on a combination of similar petrophysical characteristics. Ultimately, this rock-typing approach enables generating Static Rock Types by the reconciliation of
related geologic and petrophysical patterns. The data inventory for this study includes detailed Core Description, RCA, SCAL and of Log data. Applying consistent data quality validation, which
allows implementing a robust workflow combining deterministic methods and machine learning supported algorithms for data analysis.

PETROPHYSICAL ROCK TYPING
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Static Rock Types (SRT) were classified through distinctive sets of
geologic and petrophysical groups. This classification resulted In
four SRTs. SRT 1 exhibiting enhanced reservoir properties product
of early diagenesis, SRT2 is dominated by neutral diagenetic
processes that preserve reservoir properties, SRT3 and SRT4 are
both associated to late diagenetic property reducing processes that
distort arrangement of minerals and pore structure. The major
achievement of this rock-typing approach resumed In the
integration of Geology and Petrophysics. This integration enable
finding significant evidence to understand reservoir properties at
depositional stage, properties alteration product of diagenetic
processes and reservoir dynamic behavior links to a geologic
concept. This rock-typing approach changes the traditional practice,
formerly used to model this particular reservoir, which was limited
only to the classification of petrophysical patterns; instead, this
approach allows associating a particular petrophysical pattern to a
singular geologic facies, feature or event.
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