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Abstract

The productivity of an organic shale is driven by its reservoir quality (RQ) and completion quality (CQ). RQ consists of
parameters such as effective porosity, organic content, matrix and system permeability, fluid saturations, net thickness and
hydrocarbons in place. We have little control over reservoir quality parameters other than well placement that accounts for their
spatial variation. CQ parameters include closure stress magnitudes and profiles, structural setting, mechanical properties,
productive fracture geometry dimensions, and their placement relative to each other. Some of these parameters can be addressed
via well placement, completion designs and production management strategies. The exploration phase of a project is focused on
defining the RQ and CQ and how they vary spatially within a basin. Existing seismic, log and core data are used to high grade
acreage. Once the location(s) is selected the data acquisition program should focus on petrophysical and geomechanical
assessment from logs and core acquired in a pilot hole. Unlike with conventional reservoirs, without stimulating and producing
the well this cannot be truly confirmed. If no horizontal well is planned, then strong consideration should be given to completing
and producing the vertical well. If a lateral is planned, then hydraulic fracture simulations can determine the best lateral landing
point and predict frac geometries. Post-frac production management will insure fracture conductivity is not compromised, while
assessing the peak production rate and subsequent rate of decline. Ideally six months to one year of production is acquired to
accurately assess ultimate recovery. In the exploration phase completion and economic optimization is not the primary objective.
The data acquired at this time will we used to design a field development strategy. Once the potential for commercial production
has been indicated the key drivers become well completion optimization and development strategy. This is accomplished by
field experimentation supported by design modeling. Different completion designs, well lengths and spacing, and production
techniques are evaluated. At the same time the supply chain is developed to feed the rapid increase in well count so that
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unnecessary costs are eliminated. Many procurement topics with be the same between basins, but each basin will have unique
supply chain issues. This presentation will provide workflows to address the key technical and economic challenges for the
exploration and field development phases for unconventional reservoirs. A case history from the Fayetteville Shale will show
how one US operator achieved these objectives and ultimately developed a reservoir with tens of thousands of wells.
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> Exploration Phase
— High grading acreage for exploration well location
— Data acquisition on initial wells

> What Makes A Good Unconventional Reservoir
— Reservoir Quality (RQ)
— Completion Quality (CQ)
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> Seismic Data to Define Basin Structure
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> Well Log / Core / Cuttings Petrophysics Integration with Seismic
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> Petroleum Systems Modeling > Chance of Success (COS) Map
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> Data Acquisition on Initial Exploration Wells
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— Logging Data — Core Analysis
* Triple Combo * Retort
e Geochemical Tool * Dean Stark
* LECOTOC
e Spectral GR . Rock Eval
* NMR Tool - Tight NMR
e Dielectric * MICP
* Image Log  XRD/FTIR
 Advanced Dipole Sonic * Petrography

* In-Situ Stress Testing (where feasible)
— Or Frac and Flow Test the Vertical

Reservoir Quality Parameter
Completion Quality Parameter

Organic Petrology

Organic Geochemical Biomarkers
Inorganic Carbon Isotopes

VTI Rock Mechanics

Scratch / Thin Bed Analysis

Frac Fluid Compatibility: CST, RO




> A review of our reservoir

> Organic Hosted Pores

— Cannot always be imaged
with SEM (< 3 nm)

> Conventional Pores
— Inter-Grain
— Intra-Grain
— Dissolution

Schieber, 2011
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Common Pore Types In Shales

Framework Pores/Primary Pores Between Grains
. Grain Framework Pores (FG-Pores, generic)

Phyllosilicate Framework Pores (FP-pores)
L t: <€—— Carbonate Framework Pores (FC-Pores)

~‘~ -

Intrapores/Primary Pores Within Grains
Intra-Grain Pores (IG-Pores)
& Intra-Shelter Pores (IS-Pores)

Solvopores/Secondary Pores Due to Dissolution (acidity)

Solvo-Moldic Pores (SM-Pores) \
&« S0lvo-Rim Pores (SR-Pores)

“Foam” Pores (MF-Pores)
«— Bubble” Pores (MB-Pores)\. g

Desipores/Pores Due to Grain Shrinkage (artifacts)
General Desiccation Pores (DG-Pores)

'\Clay Desiccation Pores (DC-Pores) —.
Maceral Desiccation Pores (DM-Pores)
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> Reservoir Quality: Gas

ENGINEERS

— Traditional Gas In Place Calculation

Natural Gas Tables
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But gas injection into organic cores shows the
Hydrogen Index is much higher (~*75%) than for
methane at a given pressure and temperature
(SPE 147198), resulting in +-40% more gas.
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> Pilot Hole Reservoir Quality: Dry Gas
Total NMR Porosity Bulk Volume Water (ELAN Analysis)
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/ Water parameters

TGAS;,, = Total gasin place (scf/ton) \ Eauival Gas Gravi
quivalent to Gas Gravity

dremr = Total magnetic resonance porosity (V/v)
BVW = Bulk volume water (v/v)
#dyr = Magnetic resonance porosity (v/v)

n,, = Number of hydrogen molecules per water molecule (2)

p,, = Density of water molecule(lg/cm3)

M,, = Atomic weight of water (18.02 g/mole)

ﬁg = Number of hydrogen atoms per gas molecule in natural gas mixture

No input required for P/T
No Langmuir isotherm
No input for pore system
or kerogen type

Kausik et al. 2015
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> Woodford Shale Example
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30% Increase in GIP




> Reservoir Quality: Oil
— Volume of Bitumen

— Presence of inorganic pore system

Shale Oil
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> Pilot Hole Reservoir Quality: Oil

— T2 relaxation in native
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> Pilot Hole Reservoir Quality: Oil
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> Pilot Hole Reservoir Quality: Oil
— Reservoir Producibility Index
Oil in Larger Pores: ~>3 ms - Log generated index
‘1' « Circumvents problems associated with
W .. o\ i S 12 recovery and analysis of hydrocarbons
RP| = —C¢ =0l c—oll ~ from cuttings and/or core
W : TOC . - i
¢ —organics OSI of 100 ~ RPI of 0.1 (fc of porosity)
W = Oil Weight fraction of carbon in light hydrocarbon, may require correction for bitumen (w/w)
c —ol
W = Total organic carbon (TOCj) content, directly from Litho Scanner (w/w)
C — organics

TOC = Total organic carbon measured from RockEval (wt%)

S1 = Residual hydrocarbon from Rock Eval (mg HC/g rock)

Kausik et al. 2015




> RPI of a Good Well
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> RPI of a Poor Well
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> Completion Quality: Place the Frac in the Desired Location CQ Classification:
. . Extensional
— Stress profile / Tectonics Strike-Slip
— Lateral landing point Reverse
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> Completion Quality: Adequate Fracture Surface Area

— Frac Design —
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Blue dots
represent ash beds
identified in core

SPE 175961
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> Completion Quality: Ability for Frac to Remain Conductive

— Frac design

— Lateral landing point

— Production management
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