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Abstract 

The productivity of an organic shale is driven by its reservoir quality (RQ) and completion quality (CQ). RQ consists of 

parameters such as effective porosity, organic content, matrix and system permeability, fluid saturations, net thickness and 

hydrocarbons in place. We have little control over reservoir quality parameters other than well placement that accounts for their 

spatial variation. CQ parameters include closure stress magnitudes and profiles, structural setting, mechanical properties, 

productive fracture geometry dimensions, and their placement relative to each other. Some of these parameters can be addressed 

via well placement, completion designs and production management strategies. The exploration phase of a project is focused on 

defining the RQ and CQ and how they vary spatially within a basin. Existing seismic, log and core data are used to high grade 

acreage. Once the location(s) is selected the data acquisition program should focus on petrophysical and geomechanical 

assessment from logs and core acquired in a pilot hole. Unlike with conventional reservoirs, without stimulating and producing 

the well this cannot be truly confirmed. If no horizontal well is planned, then strong consideration should be given to completing 

and producing the vertical well. If a lateral is planned, then hydraulic fracture simulations can determine the best lateral landing 

point and predict frac geometries. Post-frac production management will insure fracture conductivity is not compromised, while 

assessing the peak production rate and subsequent rate of decline. Ideally six months to one year of production is acquired to 

accurately assess ultimate recovery. In the exploration phase completion and economic optimization is not the primary objective. 

The data acquired at this time will we used to design a field development strategy. Once the potential for commercial production 

has been indicated the key drivers become well completion optimization and development strategy. This is accomplished by 

field experimentation supported by design modeling. Different completion designs, well lengths and spacing, and production 

techniques are evaluated. At the same time the supply chain is developed to feed the rapid increase in well count so that 
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unnecessary costs are eliminated. Many procurement topics with be the same between basins, but each basin will have unique 

supply chain issues. This presentation will provide workflows to address the key technical and economic challenges for the 

exploration and field development phases for unconventional reservoirs. A case history from the Fayetteville Shale will show 

how one US operator achieved these objectives and ultimately developed a reservoir with tens of thousands of wells. 
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 Exploration Phase

– High grading acreage for exploration well location

– Data acquisition on initial wells

 What Makes A Good Unconventional Reservoir

– Reservoir Quality (RQ)

– Completion Quality (CQ)
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Area constrained 

by 2D lines only Outline of 3D 

survey area

 Seismic Data to Define Basin Structure
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 Well Log / Core / Cuttings Petrophysics Integration with Seismic

URTeC 1935073
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 Petroleum Systems Modeling  Chance of Success (COS) Map

URTeC 1935073

2200 Km2

2 Areas High Graded
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 Data Acquisition on Initial Exploration Wells

– Logging Data

• Triple Combo

• Geochemical Tool

• Spectral GR

• NMR Tool

• Dielectric

• Image Log

• Advanced Dipole Sonic

• In-Situ Stress Testing (where feasible)

– Or Frac and Flow Test the Vertical

– Core Analysis
• Retort

• Dean Stark

• LECO TOC

• Rock Eval

• Tight NMR

• MICP

• XRD / FTIR

• Petrography

• Organic Petrology

• Organic Geochemical Biomarkers

• Inorganic Carbon Isotopes

• VTI Rock Mechanics

• Scratch / Thin Bed Analysis

• Frac Fluid Compatibility: CST, ROReservoir Quality Parameter

Completion Quality Parameter
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 A review of our reservoir

 Organic Hosted Pores

– Cannot always be imaged 
with SEM (< 3 nm)

 Conventional Pores

– Inter-Grain

– Intra-Grain

– Dissolution

Schieber, 2011

Common Pore Types In Shales
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Shale Gas

Bitumen OilKerogen Kerogen Gas

Tight Oil

Positive RQ Positive RQNegative RQ Negative RQ Positive RQ

Reeder et al. (2016) Petrophysics
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 Reservoir Quality: Gas

– Traditional Gas In Place Calculation

Kerogen

Adsorbed Gas

Free Gas

~0.4 g/cm3

Isotherm

Natural Gas Tables

SPE 131772

But gas injection into organic cores shows the 
Hydrogen Index is much higher (~75%) than for 
methane at a given pressure and temperature 
(SPE 147198), resulting in +-40% more gas.
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 Pilot Hole Reservoir Quality: Dry Gas

Equivalent to Gas Gravity

• No input required for P/T
• No Langmuir isotherm
• No input for pore system 

or kerogen type

Water parameters
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 Woodford Shale Example

30% Increase in GIP
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 Reservoir Quality: Oil

– Volume of Bitumen

– Presence of inorganic pore system
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Oil in micropores  
and bound water

 Pilot Hole Reservoir Quality: Oil

– T2 relaxation in native      
and resaturated shale

Kausik et al. 2015
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3.91 p.u.

 Pilot Hole Reservoir Quality: Oil

– T2 relaxation in native 
and resaturated shale

Kausik et al. 2015
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 Pilot Hole Reservoir Quality: Oil

– Reservoir Producibility Index

• Log generated index

• Circumvents problems associated with 

recovery and analysis of hydrocarbons 

from cuttings and/or core

• OSI of 100 ~ RPI of 0.1 (fc of porosity)

Kausik et al. 2015

Oil in Larger Pores: ~>3 ms
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 RPI of a Good Well
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 RPI of a Poor Well
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 Completion Quality: Place the Frac in the Desired Location

– Stress profile / Tectonics

– Lateral landing point

SPE 188474

CQ Classification:
Extensional
Strike-Slip
Reverse

Modular Dynamic Tester
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Well landed in target 
zone in Middle and 

Upper Lower Eagle Ford Upper Eagle Ford

Lower Eagle Ford

Buda Lime
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 Completion Quality: Adequate Fracture Surface Area

– Frac Design

– Laminations
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Blue dots 
represent ash beds 
identified in core

 Completion Quality: Laminations / Ash Beds

SPE 175961
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 Completion Quality: Ability for Frac to Remain Conductive

– Frac design

– Lateral landing point

– Production management

Well JV-1




