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Abstract 

Static pressure history data provide very important information from reservoirs, not only associated with the energy behavior over time during 
its production life, but also the degree of compartmentalization of the reservoir from heterogeneities or structural boundaries. However, 
engineers must handle huge numbers of static pressure measurements that have been collected in hundreds of wells during large time spans, 
resulting in thousands of pressure points to analyze for extracting reservoir compartmentalization information. Analyzing these amounts of 
information manually is impractical and inefficient. In these cases, it is more efficient to develop a pattern recognition workflow, based on 
unsupervised learning, to identify and classify wells with pressure measurements that share similar characteristics and associate these wells to a 
specific compartment. 

A workflow for pattern recognition based on unsupervised learning was developed to classify wells with similar pressure and spatial 
coordinates and assign those results to the corresponding reservoir compartment. An unsupervised learning algorithm based on the Self-
Organizing Map (SOM) technique was trained to identify pressure patterns and classify wells. This workflow automatically assigns wells to 
each compartment according to the similarities in characteristics previously described. The first step in this workflow was to process the 
pressure information for each well for use in the SOM. Then, an unsupervised learning algorithm was applied to the resulting data to classify 
wells with similar pressures and spatial coordinates. Finally, each classified well was assigned to the corresponding compartment.  

Experience shows that unsupervised learning is a powerful tool to identify different compartments in complex reservoirs based on static 
pressure information, because of the powerful capacity to identify hidden pressure patterns (compartments). This workflow considerably 
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reduces the time to obtain compartmentalization studies. Moreover, this workflow reduces the error introduced by human intervention during 
classification processes and unifies criteria when the job is done by different engineers. 
 

Introduction 
 
Static pressure information is crucial to estimate the reservoir energy level and comprehend the degree of depletion in reservoirs due to fluid 
production. Additionally, when static pressure data for several wells is analyzed as a function of time, it is possible to obtain pressure trends 
with dissimilar behaviors which can be associated to different compartments resulting from heterogeneities or structural boundaries (layers, 
lobes or channels). Once these pressure trends are identified, it is relatively easy to classify wells that share similar depletion characteristics. 
 
Pressure trend analysis is performed by human experts with simple tools, whose use their knowledge and expertise to categorize wells with 
similar characteristics. However, experts must deal with thousands of static pressure measurements collected in hundreds of wells over time, 
which result in a time-consuming process to digest this vast amount of information and very difficult task to capture pressure trend similarities 
in a single plot. 
 
Machine learning methods can be used to overcome this kind of limitation, specifically unsupervised learning algorithms which are well-
known methods utilized to implement clustering analysis or pattern recognition processes. These sorts of techniques allow to classify large 
amounts of observations (static pressures) in certain numbers of classes, where each class is composed of observations that share similar 
attributes, and different compared with observations from other classes. In recent years, many Oil and Gas disciplines like geophysics, 
petrophysic, production engineering, etc., have applied effectively unsupervised learning algorithms to facilitate classification or pattern 
recognition process. Successful utilizations have been described in seismic facies classification (Roy et al., 2013), image category detection 
(Seebock et al., 2017), hydraulic flow units identification (Contreras, 2018) and production-data classification (Subrahmanya et al., 2014). One 
of the most widely used algorithm to carry out unsupervised learning tasks is the Self-Organizing Map (Kohonen, 1982). This algorithm is a 
topographic organization in which nearby locations in the map represent observations with similar properties. This work shows the benefits of 
using unsupervised learning algorithms based on static pressure information to identify compartments in complex reservoirs. The theory of 
SOM and the workflow construction will be discussed in detail. Results for an application in a complex reservoir will be presented as well as 
comments regarding the reduction of time to obtain compartmentalization studies. This result demonstrates the potential of unsupervised 
learning algorithm to identify compartments in complex reservoirs and classify wells belonging to those compartments. 
 

Machine Learning 
 
Machine learning is defined as computational methods that use experience to improve performance or to make predictions (Mohri et al., 2012). 
In computer sciences, experience refers to the past information available to the learner, which takes the form of data collected in electronic 
format. This data could be training sets digitized and labeled by human or information obtained from measurements from the environment 
(Mohri et al., 2012). 
 



Machine learning explores the construction and study of algorithms that can learn from and make predictions on data. Such algorithms operate 
by building a model from example inputs in order to make data-driven predictions or decisions, rather than following strictly static program 
instructions. The success of a learning algorithm relays on the data used, that’s why it is related to data analysis and statistics. Learning 
techniques are data-driven methods that combine fundamental concepts in computer science with theories from statistics, probability and 
optimization (Mohri et al., 2012). 
 
The most common machine learning types of training are supervised learning, unsupervised learning and semi-supervised learning. These 
techniques contrast in the types of training data available to the learner, the method by which training data is received and the type of test data 
used to evaluate the learning algorithm (Mohri et al., 2012). In supervised learning the learner receives a set of labeled information as training 
data and makes predictions for all unseen points (classification, regression, and ranking problems). In unsupervised learning the learner 
receives only unlabeled training data, and makes predictions for all unseen points. Since no labeled example is available, it could be 
challenging to quantitatively evaluate the performance of the learner. This procedure is associated with clustering and dimensionality reduction. 
Finally, in semi-supervised learning the learner receives a training sample consisting of both labeled and unlabeled data, and makes predictions 
for all unseen points. This technique could be used for applications such as classification, regression, or ranking tasks. 
 

Unsupervised Learning 
 
Unsupervised learning involves a process of auto association of information from the inputs in a set of classes with similar characteristics. 
Unsupervised learning algorithms are used to find patterns or features from data sets consisting of input data without labeled responses (Figure 
1). The main objective is to find subclasses by exploring the structure of the data sets to extract meaningful information without the guidance of 
a known target output, discovering hidden structures based on similarities (Contreras, 2018). Unsupervised learning needs a criterion to 
terminate the process, otherwise the learning process continues even when a pattern has been found. 
 
There are several kinds of unsupervised learning techniques that can accomplish the mission of discovering hidden structures in data where the 
right answer is not known in advance. One of the most useful procedure employed is clustering analysis, with which it is possible to yield a 
data description in terms of groups of data points that possess strong internal similarities. Clustering procedures use a criterion function to 
finalize the learning process, such as the sum of the squared distances from the cluster centers, and seek the grouping that maximizes the 
criterion function. 
 
Clustering procedures rely mainly on two measures that govern the learning process, first measure is the similarity between two samples, which 
is the distance between them. The second measure is the partition of a set of samples into clusters, which is the optimum number of groups that 
maximize the distance between clusters. Clustering analysis involve the use of any distance or similarity function that can be evaluated for 
example with the following equation: 
 



   
 
Where d is the distance between vectors X and X’, k is the number of pair of samples and q is a selectable parameter greater or equal than 1. 
Setting q = 2 gives the familiar Euclidean metric while setting q = 1 provides the Manhattan or city block metric (Duda et al., 2000). 
 
The other important task performing during the clustering analysis comprises the use of a criterion function to be optimized. The criterion 
function can be defined as a function that measures the clustering quality of any partition of the data. The most widely used criterion function 
for clustering is the sum-of-squared-error criterion, which can be represented by (Duda et al., 2000):  
 

   
 
Where c and Di is the number of subsets or clusters, D is the set of samples, x is the vector of samples and mi is the mean of samples, given by: 
 
                         

                       
 
Where ni is the number of samples x1, . . . , xn. 
 
In other words, the criterion function minimizes the sum of the squared lengths of the vectors x and mi in a given cluster Di, where the mean 
vector mi is the best representative of the samples in Di. In consequence, Je measures the total squared error incurred in representing the n 
samples x1, . . . , xn by the c cluster centers m1, . . . , mc. 
 
This work will be focused on unsupervised algorithm based on competitive learning, in which the output neurons of a neural network compete 
between themselves for the right to respond, resulting in only one neuron being activated at any one time. This activated neuron is called the 
winning neuron. The competition is induced by lateral inhibition connections between the neurons, forcing neurons to organize themselves. 
This network is called a Self-Organizing Map (Kohonen, 1982) (Figure 2). 
 

 
 
 



Self-Organizing Map 
 
Kohonen SOM is a topographic organization in which nearby locations in the map represent inputs with similar properties. SOM is a group of 
neurons organized in a low dimension mesh where each neuron is represented by a weight vector of m dimensions in which m is equal to the 
input vector dimension. Neurons are connected to adjacent neurons by a vicinity relationship that dictates topographic organization to the map. 
 
The Self-Organizing Map represents a set of high-dimensional data items as a quantized two-dimensional image in an organized manner. Every 
data item is mapped into one point (node) in the map, and the distances of the items in the map reflect similarities between the items. 
(Kohonen, 2014) The goal of Self-Organizing Maps is to represent all points in the source space by Kohonen points in a target space, such that 
distance and proximity relationships are preserved in SOM maps as much as possible (Duda et al., 2000). 
 
The process that must be followed to construct a self-organizing map involved a series of steps that take into account the neuron competition, 
neuron organization and a criterion to terminate the process. The algorithm comprises the following tasks (Contreras, 2018):  
 
Initialization: In this step, all connection weights (wi) are initialized with small random values. Weights are represented by a sequence of real n-
dimensional Euclidean vectors wi(t), where t is an integer that denotes a step in the sequence. The sub-index i is the spatial index of the node 
with which wi is associated. 
 
Competition: In each pattern there are input units defined as x = {xi : i = 1, …, D} and the connection weights between the input units i and the 
neurons j, written as wj = {wji : j = 1, …, N; i = 1, …, D} where N is the total number of neurons. Neurons compute their respective values of a 
discriminant function which provides the basis for competition. The discriminant function can be defined as the Euclidean distance between the 
input vector x and the weight vector wj for each neuron j: 
 

   
 
The particular neuron with the smallest value of the discriminant function is declared the winner. In other words, the neuron whose weight 
vector comes closest to the input vector is declared the winner.  
 
Cooperation: The winning neuron determines the spatial location of a topological neighborhood of excited neurons thereby providing the basis 
for cooperation among neighboring neurons. When one neuron is stimulated, its closest neighbor tends to get excited more than those neurons 
located further away. The Gaussian topological neighborhood for the neurons is defined as: 
 

                      



Where Si,I(x) is the lateral distance between neurons j on the grid of neurons and the winning neuron, and 𝜎𝜎 = 𝜎𝜎(𝑡𝑡) is a suitable decreasing time 
dependent function that contains information about the neighborhood radius. 
 
Adaptation: In this process, excited neurons decrease their individual values of the discriminant function in relation to the input units through 
suitable adjustment of the associated connection weights. It is very important to the formation of ordered maps that not only the winning 
neuron gets its weights updated, but as topologically related subsets, its neighbors will have their weights updated as well, with a similar kind 
of correction imposed, although not as much as the winner itself. The appropriate weight update equation is: 
 

                 
 
Where α(t) is the time dependent decreasing scalar function and could be represented by a suitable decreasing time dependent function for 
example, a decreasing exponential function (Figure 3), hyperbolic or piecewise linear functions. The learning rate decreases as the learning 
process proceeds. 
 
The weight vector wj associated with the winner neuron is updated in such a way that it moves towards the input vector x (Figure 4). 
 
The factor α(t)TI,i(x) in the above equation is called the neighborhood function. This function has the most central role in self organization 
process. This function resembles the kernel that is applied in usual smoothing processes. (Kohonen, 2014) The original SOM algorithm 
assumes that the above process converges and produces the wanted ordered values for the models. (Kohonen, 2014) 
 

Application of SOM to Compartmentalization Study in Complex Reservoirs 
 
Before the application of the workflow to study the reservoir compartmentalization in this complex reservoir, it was necessary to estimate the 
level of pressure available for each well at certain period of time. This plan started with a validation procedure applied to all static pressure 
tests recorded during the reservoir productivity life. Subsequently, all pressure measurements were referred to a single depth (datum), in order 
to compare pressure values in the same plane of reference. Finally, pressure values at a specific period of time were selected from the existing 
data set for each well, and in those wells with very few pressure tests available another procedure was followed to estimate pressure values at 
that specific period of time. 
 
Data Preparation 
 
The static pressure information used in this study belongs to a complex sandstone reservoir in a turbidite formation. The data set comprises 
coordinate X, coordinate Y and one static pressure information per well. There is static pressure information for 100 wells. 
 
The data set was organized in an input matrix in order to be used in the unsupervised learning algorithm. In the input matrix, each ith column 
have elements that denote the characteristic that represent each well (coordinates and pressure) and each ith row represents the number of 



observations (wells). In this specific case, the matrix has a size of 3 columns (characteristics) and 100 rows (number of wells with static 
pressure information). 
 
Applying the Unsupervised Learning Algorithm 
 
Creating the Self-Organizing Maps 
 
The SOM will be created with a neural network that will learn how to classify wells and assign those results to the corresponding 
compartments. First step is the initialization process of the SOM, where the map size, type of cell and initial weights with random values are 
specified. In this case, the SOM will have an arrangement of 2-dimension layer of 25 neurons (5x5) and hexagonal topology. During this 
process values for learning rate (α) = 0.1 and neighborhood radius (r) = 2 were specified. 
 
Model Selection 
 
This process consists of the selection of the optimum SOM size, which involves the selection of the map that minimizes the average distance 
between each data vector and its best matching unit (BMU), and the topographic error. During the selection process, a sensitivity analysis with 
different sizes of SOM was performed, in order to study and analyze the impact of different map sizes in the pattern recognition task. The 
following map sizes were used 5x5, 8x8, 10x10, 12x12, 14x14 and 16x16. Table 1 contains different SOM characteristics and its performance 
during the training process. 
 
Table 1 shows that in a square map with random initialization vectors, the distance between data vector and its BMU decreases as the map size 
increases. However, the minimum value for topographic error was accomplished by the map size of 12x12 cells. In conclusion, the SOM that 
presents the best performance during the pattern recognition process is the map size 12x12. 
 
The SOM selection process explained above corresponds to 100 pressure observation. Because the selection of the optimum SOM size is 
highly dependent on the number of observations, the selection process must be carried out when the number of observations change greatly. 
Other studies have demonstrated that the SOM size is proportional to the number of observations (Contreras, 2018). Additionally, some studies 
also state that there is no other method to select the optimum SOM size than a trial-and-error method. Once the optimum size of the SOM was 
identified, the trained map could be used to perform the compartmentalization study. 
 
Case Study (Complex Reservoir) 
 
This reservoir belongs to a turbidite formation, which are characterized for being highly complex deposits composed of several layers, lobes or 
channels. Pressure values in this reservoir ranges from 105 psi to 1615 psi, showing the degree of compartmentalization presents in the 
reservoir. The ample range of pressure depletion is the result of fluid production in different compartments with diverse sizes and 
characteristics. As stated before, one pressure value is available per well with a total of 100 wells. Figure 5 shows the well distribution in the 
reservoir with static pressure information. 



The goal of the SOM is to identify automatically the number of compartments present in this reservoir by using the static pressure information 
to better understand the degree of complexity in the reservoir. The unsupervised algorithm was applied to the available information and the 
result is shown in Figure 6. The bar code in the SOM from Figure 6 denotes similarity between well characteristics (coordinates and static 
pressure values), ranging from yellow (very different) to dark blue (very similar). In other words, connection neurons with yellow, orange, 
green and cyan colors indicate wells with very different or different pressure trend and spatial coordinates, while connection neurons with blue 
and dark blue indicate wells with very similar characteristics. 
 

Results 
 
The SOM analysis shows that there is approximate 23 group of wells with different pressure trend (Figure 7), revealing that the reservoir is 
highly compartmentalized. Each group of wells are separated by neurons with yellow or cyan colors that represent different compartments. The 
more connecting neurons have the yellow or cyan color between the neurons with information, the more different the pressure trend of the well 
will be. Additionally, there are certain group of wells with small differences in coordinates and pressure values, separated by 1 row of neurons 
with a light blue color which can be interpreted as different compartments. 
 
The SOM evaluation identified a total of 29 compartments which contain, in most of the cases, very different pressure trends and location 
characteristics (Figure 8). In Figure 8 is possible to observe the high degree of complexity in the reservoir by interpreting the pressure 
variability. It can be noted pressure differences up to 1190 psi in neighbor compartments separated by less than 500 meters. Figure 9 reveals 
that static pressure values for wells in the same compartment are very similar, noting that in most of the cases the pressure range in the same 
compartment is about 150 psi or less. 
 
The compartments identification process by utilizing SOM honors the selection of well with similar coordinates and similar pressure 
information. Only six wells were observed to be misclassified, which represent only 6% of the total number of available wells. This indicates 
that there is a high probability to obtain a good compartmentalization study using this technique.  This SOM incorporates the X and Y 
coordinates and the static pressure values at a specific period of time, however, the rate of pressure declination could be used to improve the 
classification process. 
 

Discussion 
 
The number of observations significantly influences the optimum SOM size to be used. Results in Table 1 corroborates this statement. 
Additionally, SOM features affect the classification performance. The compartments identification process by utilizing SOM honors the 
selection of well with similar coordinates and similar pressure information. Only six wells were observed to be misclassified, which represent 
only 6% of the total number of available wells. The rate of pressure declination could be used to improve the classification process. 
 
The unsupervised learning is a powerful tool to identify different compartments in complex reservoirs, and additionally, reduces the time and 
the error introduced by human to obtain compartmentalization studies. 
 



Conclusions 
 
Unsupervised learning by using SOM is a great tool to perform compartmentalization studies in complex reservoirs based on static pressure 
information. The classification result indicates that SOM was able to identify compartments with large or small differences in its attributes 
(coordinates and pressure). 
 
The SOM size is proportional to the number of observations, reason for which it is very important to execute a sensitivity analysis by varying 
map size in order to select the optimum SOM size with the best performance. 
 
Results indicate that the compartmentalization study highly depends on well’s coordinates and static pressure information. The number of 
misclassified wells was about 6%, which indicates that there is a high probability to obtain a good compartmentalization study using this 
procedure along with these attributes. 
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Figure 1. Pattern recognition of unlabeled data. 



 
 
Figure 2. Classification with Self-Organizing Map. 



                                                      
 
                                                                     Figure 3. Learning rate with decreasing function. 
 
 
 
 

                                                 
 
                                                               Figure 4. Adaptation process (Contreras, 2018). 



                                  
 
Figure 5. Well distribution with static pressure information in the complex reservoir. 



 
 
Figure 6. Self-Organizing Map identifying wells that share similar characteristics. 



                 
 
Figure 7. Identification of group of wells that follow the same pressure trend. 



                                   
 
Figure 8. Well distribution with compartments identification. 



 
 
Figure 9. Static pressure values in each compartment. 



 
 
Table 1. Comparison results for different Self-Organizing Map characteristics. 


