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Abstract

Rising salt bodies create unique deformation patterns and faulting associated with salt tectonics. These fracture networks can influence the hydrological
behavior of rocks near salt bodies by acting as barriers or conduits for the movement of fluids like sedimentary brine, meteoric water, hydrocarbons and
various ore-forming fluids. Studying the field characteristics of brittle deformation near salt can help identify and rank the significance of variables
associated with the compartmentalization of subsurface fluids by faults adjacent to salt. In the southwestern portion of the Paradox Basin, in southwestern
Colorado, the southern end of the Gypsum Valley salt wall features a NW-trending counter-regional fault and two SW-trending radial faults. We
combined field and laboratory analyses to investigate the paleohydrological behavior of these faults. Field observations suggest radial fractures formed
first and are enhanced by the two radial faults, while concentric fractures formed later. Fracture intensity generally decreases with distance from the radial
faults suggesting that some fractures were induced by faulting. Microtextures in calcite veins suggest mineralization was primarily post-kinematic. Stable
isotopes of carbon and oxygen in calcite show the presence of two paleofluid types: meteoric water or sedimentary brines. Both are found along the radial
faults, while one type is found along the counter-regional fault suggesting the faults in this area served as conduits to flow, but that different fluids may
have moved along each type of fault. There is no partitioning of paleofluid types across the faults, indicating that they did not compartmentalize the
regional, kilometer-scale fluid system.
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Motivation, Objective, and Approach Fracture Network Analysis Paleofluid System Fault and Fracture Related Paleofluid System Summary

Rising salt bodies create unique deformation patterns and faulting associated with salt tectonics, creating a spatially complex = We examined 20 outcrops on opposite sides of the faults and along the length of the faults as throw decreases to | We conducted stable isotope analyses of carbon and oxygen on select samples of vein and host rock calcite. In keeping with previous
network of high permeability pathways that can dramatically influence the movement of subsurface fluids in the vicinity of salt | characterize the style (Figure 4), orientation (Figure 5), relative abundance (Figure 6), and timing (Figure 7) of fractures = Work (e.g., Bons et al., 2012), systematic stratigraphic or structural variations in the isotope values (5'*0 and 6**C) are intrepreted as a
structures. Understanding the movement of fluids in the vicinity of these structures is critical for a variety of endeavors ranging = comprising the local network and to test for variability in those characteristics as a function of fault throw. Limited outcrop | reflection of stratigraphical or structural control on the paleofluid system structure (e.g., fault compartmentalization).

eRadial fractures formed first, later they coalesce to form radial faults.
eConcentric fractures formed last around the nose of the salt wall as suggested by field relations.
*Two exotic (i.e., externally derived) paleofluid types moved through the fracture network.

i i i . availability restricted our photogeological analysis of fracture abundance and focussed the majority of the stations alon . ) g . o
from CO, sequestration, waste disposal, hydrocarbon exploration, and groundwater resources Y . P g g Y jority g eThe faults behaved as conduits for fluid movement as shown with increased fractures near faults, greater mineralization,
. o . . o the western radial fault. dth £ two fluid t (Fi 12)
We aim to understand the hydrological significance of radial and counter-regional faults that often occur at the terminations of Stable Isotope Analysis and the presence ot two tluid types (Figure 12).
salt walls in the Paradox Basin. Fracture Style Fracture Orientation Mineralized fractures are comprised of syntaxial calcite. Powdered samples from vein and host rocks (Figure 8) were analyzed using
. X . § . X Fractures are predominantly joints. Approximately 5-10%  (entations at each station of radial and concentric fractures around the aThermoFinnigan MAT253 Isotope Ratio Mass Spectrometer and the values (6'®0 and §"C) plotted according to stratigraphic and Schematic Summary of Paleofluid Migration
We constrained paleohydrological behavior through (1) fieldwork, (2) GIS-based fracture network analysis, and (3) petrographic fractures are mineralized with calcite, and about 15% display o6 of the plunging salt wall. Only three stations show clear timing structural positions (Figure 9). The data show two fluids, different from the host rock, moving through the veins in the system,
and isotopic analysis of fracture and host rock mineralization. minor faulting. Deformation bands are present but uncommon. relationships. implying this is an open system.
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We conducted our study at the southern end of the Gypsum Valley salt wall, in the Paradox Basin of southwestern Colorado ‘
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