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Abstract 
 
Hyperspectral imaging (HI) is a method of observing and enhancing geological rock properties that are not readily apparent visually. Originally 
developed for the mining industry for use in airborne systems, HI uses a combination of short-wave infrared light (SWIR) and long-wave 
infrared light (LWIR) to create a visual ‘map’ of the minerals on the surface of a core that respond to reflectance principles. Although bespoke 
hyperspectral imaging systems have now been developed and utilized to great success in the mining industry to map mineralogical changes 
along a core, the technology has been limited to the SWIR region (<2500 nm), and important minerals in oil and gas reservoirs, such as quartz 
and feldspar, cannot be detected in those wavelengths. Until very recently, commercial imaging technology for the LWIR has not been 
available due to cost and technical challenges. The relatively new LWIR spectrometer, which contains a specialized lens to obtain data at a high 
resolution of 300-500 µm per pixel, measures responses from tectosilicates, carbonates and some clays, as well as hydroxides, sulfates, and 
phosphates. Processing of the HI data involves the generation of two sets of self-organizing map (SOM) classifications, one for each of the 
SWIR and LWIR sensors. SOM is a type of unsupervised artificial neural network, which is an effective classification method to classify non-
linear data with a large number of variables by calculating minimum distances between the data points. Each acquired pixel on the core surface 
is associated with a SOM class from the SWIR and LWIR sensors. We have developed a method that utilizes these raw (uninterpreted) SOM 
data to produce rock types for cores from both silicate and carbonate formations. These rock types have been generated for a variety of 
conventional and unconventional reservoirs to guide sampling for plug locations for conventional and special core analysis. We present 
examples of how HI-derived rock types have been combined with a variety of core data, including core description, thin-section, X-Ray 
Fluorescence (XRF) data and X-Ray Diffraction (XRD) data to produce impactful mineralogical integration within a stratigraphic context. 
 

Selected References 
 
Alnahwi, A., T. Kosanke, R. Loucks, J. Greene, X. Liu, and P. Linton, 2019, High-resolution Hyperspectral-based Continuous Mineralogical 
and TOC Analysis of the Eagle Ford Group and Associated Formations in South Texas: AAPG Bulletin (in publication). 
 



ElMasry, G., and D.-W. Sun, 2010, Principles of Hyperspectral Imaging Technology, in D.-W. Sun (ed.), Hyperspectral Imaging for Food 
Quality Analysis and Control: Academic Press, Elsevier, London, p. 3-43. 
 
Greene, J., T.H. Kosanke, and P. Linton, 2019, Quantitative Calibration of Hyperspectral Core Imaging Data: A New Method for Producing 
Continuous, High-Resolution Mineralogical Characterization of Cores from Both Conventional and Unconventional Reservoirs: 2019 AAPG 
Annual Convention and Exhibition, San Antonio, Texas, May 19-22, Search and Discovery Article #42444 (2019). Website accessed 
September 2019. 
 
Hunt, G.R., J.W. Salisbury, and C.J. Lenhoff, 1973, Visible and Near Infrared Spectra of Minerals and Rocks. VI. Additional Silicates: Modern 
Geology, v. 4, p. 85-106. 
 
Kosanke T.H., and J. Chen, 2017, Hyperspectral Imaging: Geological and Petrophysical Applications to Reservoir Characterization: 
Unconventional Resources Technology Conference, Austin, TX.  doi10.15530-urtec-2017, 2670537 
 
Kosanke, T.H., S.E. Perry, and R. Lopez, 2017, Hyperspectral Imaging Technology Development and Application; Implications for Thin-
Bedded Reservoir Characterization: AAPG 2017 Annual Convention and Exhibition, Houston, Texas, April 2-5, 2017, Search and Discovery 
Article #42119 (2017). Website accessed September 2019. 
 
Murphy, R.J., and S.T. Monteiro, 2013, Mapping the Distribution of Ferric Iron Minerals on a Vertical Mine Face using Derivative Analysis of 
Hyperspectral Imagery (430–970nm): ISPRS Journal of Photogrammetry and Remote Sensing, v. 75, p. 29–39. 
 

http://www.searchanddiscovery.com/documents/2019/42444greene/ndx_greene.pdf
http://www.searchanddiscovery.com/documents/2017/42119kosanke/ndx_kosanke.pdf
http://www.searchanddiscovery.com/documents/2017/42119kosanke/ndx_kosanke.pdf


Terracore High-Resolution 
Hyperspectral Imaging of Core (SWIR and LWIR)

20131970s
Early
1980s

Late 
1980s

1991 1992
Late 
1990s 2003 2004 2007 2016

1970-Multispectral Imaging

LandSat

Hyperspectral imaging

1997-HyMap (SWIR)

1992-SWIR Hyperspectral Imaging

2013-Mine-face Mapping 
(VNIR)

2010-Hyperspectral Imaging Technology Expands to Numerous Industries (SWIR)

First earth 
observation 
satellite, Landsat, 
using multi-
spectral sensors 
(60-90m pixels)

First airborne 
hyperspectral 
systems 
developed. 
Daedalus, 
operated by 
Texaco, were 
early adapters, 
but 
effectiveness 
was limited.

AVIRIS airborne 
hyperspectral 
instrument 
owned and 
operated by 
NASA for 
research. HyMap
instruments 
appear as one of 
first commercial 
airborne systems, 
followed by 
SpecIm and Norsk
Elektro Optik.

Introduction of 
high-resolution 
shortwave 
(SWIR) and 
longwave 
(LWIR) 
hyperspectral 
imaging of core

First 
sisuROCK
instrumen
ts and 
introducti
on of 
shortwave 
(SWIR) 
hyperspec
tral 
imaging of 
core; 
can’t 
detect 
tectosilica
tes.

Upgraded 
Landsat 
satellite 
systems 

with better 
spatial and 

spectral 
resolution 
(10-30m)

High spatial resolution 
satellites (Quickbird

and Ikonos) 

ASTER appears, the 
culmination of the 

coarse spatial 
resolution 

multispectral satellites.

SWIR LWIR

Hyperspectral Imaging 
System 

Three spectrometers in 
succession (RGB, SWIR, 
LWIR) are used to 
acquire spectral data

Food

Pharma

Art

Crime

Medicine

Recycling

Active Ingredients

Tablet Types

Quality Control

Precision Agriculture

Quality Control

Food Safety

Utilization of High-resolution Short- and Long-wave Hyperspectral Imaging for Integrative Rock Typing
Xiuju Liu (liuxiuju@gmail.com) and Tobi Kosanke



Rock Type A
Rock Type B
Rock Type C
Rock Type D

Rock Type A1
Rock Type A2
Rock Type A3
Rock Type A4
Rock Type B1
Rock Type B2

Rock Type C1
Rock Type C2
Rock Type C3
Rock Type D1
Rock Type D2
Rock Type D3

Calcite
Dolomite
K-Feldspar
Other

Plagioclase
Quartz
Total Clays

Calcite
Dolomite
K-Feldspar
Other

Plagioclase
Quartz
Total Clays

Example of Rock Typing_Integrated Chart

0 200ppm

Mo

M
D

(f
t)

9210

9220

9230

9240

9250

9260

9270

9280

9290

9300

9310

9320

9330

9340

9350

9360

9370

9380

9390

9400

9410

9420

9430

9440

9450

9460

9470

9480

9490

9500

9510

9520

9530

0 20-

EFV

0 20wt%

Al2O3

0 20ppm

Nb

0 300ppm

Ni

0 2000ppm

Sr

0 500-
Fe/Mg

0 12wt%
Fe2O3

0 0.1-
P/Al

0 0.5wt%
P2O5

0 2wt%

TiO2

0 100-
Ca/Al

0 60wt%
CaO

0 1.5-
Mg/Al

0 10wt%
MgO

0 25-
Si/Al

0 60wt%
SiO2

0 20ppm
U

0 20ppm
Th

0 5%
K2O

Rock Types Rock Sub-types

Fo
rm

at
io

n

9205

Up
pe

rE
ag

le
Fo

rd
Lo

w
er

Ea
gl

e
Fo

rd

9324

B
ud

a

9465

D
el

Ri
o

9507

9531

0 150API

ChemGR

0 10wt%
XRD_Plagioclase
0 10wt%

Plagioclase
0 100wt%
XRD_Total Carbonates
0 100wt%

Total Carbonates

0 10wt%
XRD_Dolomite
0 10wt%

Dolomite

0 10wt%
XRD_Chlorite

0 10wt%
Chlorite

0 30wt%
XRD_Illite & Mica
0 30wt%

Illite & Mica

0 100wt%
XRD_Quartz

0 100wt%
Quartz

0 5wt%
XRD_K-Fledspar
0 5wt%

K-Feldspar

0 30wt%
XRD_Illite/Smectite
0 30wt%

Illite/Smectite

0 30wt%
XRD_Kaolinite
0 30wt%

Kaolinite

0 100wt%
XRD_Calcite

0 100wt%
Calcite

0 100wt%
XRD_Total Frameworks
0 100wt%
Total Frameworks

0 100wt%
XRD_Total Clays

0 100wt%
Total Clays

0 100

SWIR + LWIR

0 100

XRD

M
D

(f
t)

9210

9220

9230

9240

9250

9260

9270

9280

9290

9300

9310

9320

9330

9340

9350

9360

9370

9380

9390

9400

9410

9420

9430

9440

9450

9460

9470

9480

9490

9500

9510

9520

9530

“SWIR + LWIR” Vs. “XRD” Hand-held XRF Rock Typing Sta�s�cal Cluster

Using HH XRF data
SWIR + LWIR “Class” data

U�liza�on of High-resolu�on Short- and Long-wave Hyperspectral Imaging for Integra�ve Rock Typing
 Xiuju Liu (liuxiuju@gmail.com) and Tobi Kosanke

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800

Sa
m

pl
e 

co
de

 fo
r o

rd
er

 (1
,7

64
 lin

es
 o

f m
ea

su
re

m
en

ts
)

Cluster using combined data of HI and XRF

Rock Type A1

Rock Type A2

Rock Type A3

Rock Type A4

Rock Type B1

Rock Type B2

Rock Type C1

Rock Type C2

Rock Type C3

Rock Type D1

Rock Type D2

Rock Type D3

Rock Type  A

Rock Type  B

Rock Type  C

Rock Type  D

Hyperspectral imaging (HI) is a method of observing and enhancing geological rock properties that are not readily apparent visually. 
Originally developed for the mining industry for use in airborne systems, HI uses a combination of short-wave infrared light (SWIR) and 
long-wave infrared light (LWIR) to create a visual ‘map’ of the minerals on the surface of a core that respond to re�ectance principles. 
Although bespoke hyperspectral imaging systems have now been developed and utilized to great success in the mining industry to map 
mineralogical changes along a core, the technology has been limited to the SWIR region (<2500 nm), and important minerals in oil and gas 
reservoirs, such as quartz and feldspar, cannot be detected in those wavelengths.

Until very recently, commercial imaging technology for the LWIR has not been available due to cost and technical challenges. The relatively 
new LWIR spectrometer, which contains a specialized lens to obtain data at a high resolution of 300-500 µm per pixel, measures responses 
from tectosilicates, carbonates and some clays, as well as hydroxides, sulfates, and phosphates. 

Processing of the HI data involves the generation of two sets of self-organizing map (SOM) classi�cations, one for each of the SWIR and LWIR 
sensors. SOM is a type of unsupervised arti�cial neural network, which is an e�ective classi�cation method to classify non-linear data with a 
large number of variables by calculating minimum distances between the data points. Each acquired pixel on the core surface is associated 
with a SOM class from the SWIR and LWIR sensors. We have developed a method that utilizes these raw (uninterpreted) SOM data to produce 
rock types for cores from both silicate and carbonate formations. These rock types have been generated for a variety of conventional and 
unconventional reservoirs to guide sampling for plug locations for conventional and special core analysis. We present examples of how 
HI-derived rock types have been combined with a variety of core data, including X-Ray Fluorescence (XRF) and X-Ray Di�raction (XRD) data to
produce impactful mineralogical integration within a stratigraphic context. 
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Case Study
Here we present a case study to demonstrate how to utilize HI raw SOM 
data for integrative rock typing.   The ~325 ft cores are from the Eagle 
Ford formation.  HI data were collected at a resolution of 0.01 ft.  
Hand-held XRF data were collected at a resolution of 0.17 ft.  The details 
of this study are available in Alnahwi et al. 2019. 

Upper right panel:  four rock types and  twelve rock sub-types are 
determined using a classical clustering method.  The rock types are used 
to guide XRD sampling.

Lower right panel:  the integrated logs include rock typing results, XRD
mineral compositions, HI calibrated mineral compositions, and hand-
held XRF data.

Reference:
High-resolution Hyperspectral-based Continuous Mineralogical and TOC
Analysis of the Eagle Ford Group and Associated Formations in South Texas. 
Ahmed Alnahwi, Tobi Kosanke, Robert Loucks, James Greene, Xiuju Liu, 
and Paul Linton.  2019.  AAPG Bulletin,  in publication.
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• We have developed a method that utilizes raw (uninterpreted) SOM data to produce rock types for cores from both silicate and carbonate formations. 

• The HI “rock types” are statistically driven rock types that share similar elemental and spectral responses. 

• We presented a case study to demonstrate how to utilize HI raw SOM data for integrative rock typing.

• HI-derived rock types were combined with a variety of core data, including X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) data to produce impactful 
mineralogical integration within a stratigraphic context.

• The rock types can be used to guide and optimize XRD sampling, with the number of clusters selected subjectively to fit the project budget. 

• In future, we plan to evaluate the use of the mid-range infrared light (MWIR) for rock typing.
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