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Abstract 
 
Hyperspectral imaging (HI) of core involves utilization of non-destructive, infrared spectroscopy to capture mineralogical and textural 
information of the slabbed face of a core. Spectral information obtained from two spectrometers, one that detects energy within the short-wave 
infrared (SWIR) spectrum and the other within the long-wave infrared (LWIR) spectrum, is co-registered to identify the in-situ minerals 
present on the core face including tectosilicates such as quartz and feldspar, which cannot be detected in the SWIR or very-near infrared 
(VNIR) ranges. The spectral data are acquired, using specialized high-resolution lenses, at a spatial resolution of 300 to 500 microns per pixel, 
allowing identification of thin laminae and subtle sedimentological features in cores from both conventional and unconventional reservoirs. 
This level of resolution also enables integration of the relatively continuous HI data with information obtained from more spatially discrete 
measurements such as X-ray diffraction (XRD) data, thin section petrography, and scanning electron microscopy (SEM) to facilitate upscaling 
of those fine-scale data to core and wireline log scales. 
 
Many standard HI analyses involve interpretive or spectral-matching classifications of waveforms to deliver qualitative mineralogical 
information. Although a variety of spectral un-mixing algorithms can be used to infer mineralogy in a more quantitative manner, the un-mixing 
techniques are impacted by the non-linearity and spectral variability of mineral mixing. In this study, analytic models were developed to 
calibrate spectral classifications using XRD data as control points. Forward modeling was used to validate the fit between the measured and 
predicted property values. This methodology was successfully applied using HI data obtained on several cores from both conventional and 
unconventional formations. 
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Introduction 
 
Hyperspectral core imaging involves a method of non-destructive, infrared spectroscopy to capture mineralogical and textural information of 
the slabbed face of a core (Kosanke et al., 2017). The application of this technology to core analysis evolved from an origin in multispectral, 
remote sensing programs where it was used to acquire satellite imagery of Earth (Bernstein, 1976). The mining industry was quick to 
implement the use of visible near-infrared (VNIR) and short-wave infrared (SWIR) in airborne systems for exploration (Vane and Goetz, 1988; 
Bierwirth et al., 2002; Plaza et al., 2009; Taranik and Aslett, 2009; Murphy and Monteiro, 2013). Other industries, such as agriculture, 
pharmaceuticals, homeland security, medicine, recycling, food, forensics, and art have also adopted hyperspectral analysis in a variety of 
applications (ElMasry and Sun, 2010; Sun, 2010; Marshall, 2011; Edelman et al., 2012; Lu and Fei, 2014; Cucci et al., 2016). Technological 
advances in the last few decades have enabled the collection of data at higher spatial and spectral resolutions (Kurz et al., 2008; Monteiro et al., 
2009; Kurz et al., 2011; Murphy and Monteiro, 2013; Kosanke et al., 2017). In 2007, VNIR-SWIR hyperspectral imaging was implemented 
into core analysis workflows for the mining industry with notable success. 
 
Although valuable for the mining industry, HI systems utilizing the VNIR–SWIR spectral regions had limited applicability for hydrocarbon 
reservoirs due to the inability for certain minerals to be uniquely detected, including quartz and feldspar (Hunt et al., 1973). The introduction of 
long-wave infrared (LWIR) data collection for core imaging became a significant technical advancement to allow the identification of 
tectosilicate mineral species, which were formerly aspectral in the VNIR-SWIR (Kosanke et al., 2017). The addition also facilitates the 
acquisition of improved spectral information from dark lithologies which exhibit low reflectance in the VNIR-SWIR. The integration of 
spectrometers using specialized lenses provides the ability to detect a comprehensive range of minerals including carbonate, clay, tectosilicate, 
and sulfate species at a high resolution of 300-500 micron pixels. The SWIR also has hydrocarbon detection capabilities to augment the 
inorganic characterization. 
 

Data and Methodology 
 
Hyperspectral image data was acquired using an integrated system located at ALS Oil & Gas Laboratories in Houston, TX and operated in 
partnership with TerraCore. The system includes the sequencing of two infrared spectrometers to capture both the long-wave and short-wave 
infrared regions. A visible light, RGB, camera is also utilized to provide a natural color image for reference. 
 
The SWIR spectrometer collects 288 bands of data between 1000 and 2500 nm, at 5.6 nm sampling rate and 9 nm spectral resolution. The 
LWIR spectrometer collects 96 bands of data between 7700 and 12300 nm, at 48 nm sampling rate and 100 nm spectral resolution. Data are 
collected at a high spatial resolution of approximately 400 microns per pixel for the infrared spectrometers and 120 microns per pixel for the 
RGB camera. The pixel resolution captured for these datasets reduces the degree of mineral mixing and provides more detailed mapping for 
thin bedding and laminations (Browning and Kosanke, 2016). 
 
Reference material data (Spectralon for the SWIR and brushed aluminum for the LWIR) are acquired along with dark current measurements for 
each core image. Dark current measurements account for the noise generated by the temperature difference between the environment and the 
hyperspectral camera (Manea and Calin, 2015). 



Following data acquisition, core masking processes are used to extract the desired pixels for analysis from the background, open fractures, and 
uneven surfaces. This masking procedure allows the image analysis routines to exclude outlier and noise-attributing data. Due to the size and 
dimensionality of the acquired image dataset, an artificial neural network computational model is then utilized to separate the dataset into 
classifications that are spectrally and spatially significant. The unsupervised self-organizing map (SOM) classification algorithm is applied with 
specific wavelet features being designated as endmember variables. SOM has proven to be an effective method of classifying nonlinear data 
with a large number of variables by calculating the minimum distances between data points (Al Ibrahim, 2014). Every masked pixel on the core 
surface is associated with a SOM class from each infrared spectrometer, with each SOM class representing a variation in the spectral response. 
Within the spectrum of each SOM classification, there are diagnostic absorption and reflectance features that can be qualitatively interpreted to 
facilitate mineral identification, elemental substitutions, crystallinity, and relative grain sizes. Although spectral reference libraries are available 
for pure minerals, the mineral mixtures that exist in fine-grained sedimentary reservoirs will produce waveforms that exhibit spectral variability 
and non-linear behavior (Bioucas-Dias et al., 2012). 
 
Because spectral imaging produces a generally qualitative dataset, a “ground truth” dataset is required to calibrate the unknown SOM-derived 
classes to quantifiable mineral abundances. For this illustration of our modeling approach, we utilized XRD data, though other quantitative 
datasets have the potential to be used. Due to the degree of mineral mixing within individual pixels, our model designates the entire spectrum 
as input variables rather than targeting individual, diagnostic wavelets. At each location on the core face for which a sample was obtained for 
XRD analysis, the co-existing series of SOM data are associated to build a large, multivariate system of equations. Additional constraints are 
implemented to prevent the model from producing a sum of mineral abundances greater than unity (100%) and individual mineral species 
greater than their mineral group. With the system of equations and constraints built, a series of regressions are performed to minimize the sum 
of squared differences and/or sum of squared relative errors between the known mineral abundance and calculated mineral abundance for 
various mineral groups. 
 
The solved variable coefficients can then be applied to the full dataset for continuous, calculated mineralogy at all depths along the imaged 
interval. 
 

Results and Discussion 
 
Our model was individually implemented on slabbed, legacy cores from the Austin Chalk, Bone Spring Shale, Eagle Ford, and Wilcox 
formations. Each cored formation contained approximately 250 feet of cumulative footage with occasional gaps due to testing and removal. 
The XRD datasets for each formation were sourced from various laboratories. Though not by design, the differences in the XRD data sourcing 
helps to evaluate whether the model can be applied on other legacy core and external datasets. Each uncalibrated HI dataset was calibrated 
using a subset of XRD data points and then compared the forward modeled results from the full XRD dataset.  
 
The modeled hyperspectral mineral abundances were plotted against the measured XRD mineral abundances in Figure 1, Figure 2, and 
Figure 3. For each, a best-fit linear trend was generated to better understand the accuracy and precision of the calibration. To start, the linear 
equations show positive relationships between the model (x) and the known values (y) indicating that the SOM classifications are capturing the 
high and low limits of the XRD values. The R2 values, which are a statistical measure of how close each calibration point (x, y) is to the best-fit 



linear trend, also suggest the model fits the data with minimal scatter. In general, the closer the R2 value is to 1, the better the model fits the 
data. 
 
The accuracy of the calibrated results is a function of both the number of calibration points used and the range of SOM classifications that are 
sampled by XRD. The higher number of SOM classifications that the calibration points comprise, the better the calibration will be. To aid the 
calibration workflow, the uncalibrated SOM data should be used to guide the selection of samples for XRD analysis. For this study, the optimal 
number of samples for calibration was found to approximately one XRD sample per 10 to 15 feet of core. 
 
The primary assumptions associated with this model are:  
 

• All of the minerals reported in the XRD data are present in the SOM classes. The fit between the calibration results and XRD values 
indicates that the SOM classification is an effective approach for capturing the presence of major and minor minerals; however, its 
ability to detect trace minerals requires further investigation. 

 
• The hyperspectral image data and the associated XRD calibration point represent the same bulk rock. This strongly depends on the 

XRD sampling technique, particularly if there is a mineralogical difference between the location sampled for XRD and the imaged core 
surface. 

 
• The external dataset used to calibrate the spectral data is accurate. The accuracy of XRD data in particular will vary by laboratory, and 

is a function of sample preparation, instrumentation, and analytical technique (Bish and Chipera, 1988).  
 
The calibration of hyperspectral SOM classification data to XRD mineral abundances also enabled continuous single mineral logs to be 
produced (Figure 4). Although these logs have a degree of uncertainty associated with their calibrated values, the addition of high-resolution, 
continuous mineralogical trends with depth adds significant understanding compared to discrete XRD point analyses. The logs can also be 
plotted alongside petrophysical logs, albeit at a much higher resolution, to assist in the upscaling of other fine-scale, discrete datasets (Kosanke 
and Chen, 2017). The high resolution of the hyperspectral-derived mineralogy compared to the log-derived mineralogy is evident by the 
capture of thin laminae and inter-beds (Browning and Kosanke, 2016). 
 

Conclusions 
 
Although the image products (mineral maps) generated by hyperspectral imaging provide textural understanding of the mineralogical variations 
and assemblages observed on the slabbed core surface, there is a need to transform spectrally-derived mineralogical information into 
quantitative data for calculation and modeling purposes and for input of mineralogy as curves into petrophysical software. 
 
The calibration of hyperspectral imaging from the short-wave infrared (SWIR) and long-wave infrared (LWIR) spectra provides a valuable step 
towards quantifying core mineralogy at a high-resolution. The addition of continuous mineralogical trends from our hyperspectral-imaging-



derived (SWIR + LWIR) model adds significant value to discrete XRD point analyses, and can likely be improved with continued 
development. The mid-wave infrared region (MWIR) is an area for future investigation, due to its sensitivity to both hydrocarbons and mineral 
species, to improve our model for comprehensive organic and inorganic characterization. 
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Figure 1. Comparison between the hyperspectral calibrated abundance and XRD measured abundance for the subset of Bone Spring Shale 
samples. 



                                

Figure 2. Comparison between the hyperspectral calibrated abundance and XRD measured abundance for the subset of Austin Chalk samples. 



                                 

Figure 3. Comparison between the hyperspectral calibrated abundance and XRD measured abundance for the set of Wilcox samples. 



                                   

Figure 4. Comparison of hyperspectral-derived continuous mineral logs and wireline-derived mineral log. XRD points used for calibration are 
displayed as discrete points along the interval. A total of 9 XRD samples were available to use for calibration – additional points would 
improve calibration accuracy. The resolution of the hyperspectral mineralogy is evident when compared to the log-derived mineralogy as thin 
interbedded layers are able to be captured. 


