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Abstract 

Reservoir production forecasts used to sanction project approvals are typically optimistic, sometimes significantly optimistic. Nandurdikar and 

Wallace’s 2011 SPE paper, which was based on a large number of project lookbacks, noted that the production shortfall for projects that were 

found to have reservoir-related “issues” such as optimistic OOIP or more than expected reservoir compartmentalization or heterogeneity 

typically produced only about 55% of the volumes projected at time of project sanction. A portion of the forecast optimism, perhaps 15-25%, 

may be explained by the impact of sparse data, particularly in the early phases of development when the number of wells is limited. The typical 

parameters used to build reservoir models may contribute 20-40% of the forecast optimism particularly if relatively coarse grids and/or 

significant horizontal and/or vertical upscaling is done prior to dynamic modeling. Well location optimization workflows may contribute 10-

25% of the observed forecast optimism. Human biases such as the real or perceived need to move a project forward, likely contribute 30-40% 

to the observed forecast optimism. Mitigation of most of the mentioned sources that contribute to the observed production forecast optimism 

may be mitigated through better understanding of the impact of static and dynamic modeling parameters on the resulting forecast. For example: 

(1) Use the smallest possible grid cell size when building the initial geological model; (2) limit the amount that the geological model is 

upscaled as the dynamic model is constructed; and (3) consider the potential bias introduced as a result of the location of delineation/appraisal 

wells. Finally, the use of truly independent peer reviews may significantly reduce the impact of human bias, particularly in cases where there 

may be a “management-induced” bias to advance or approve a particular project. Note that the observations reported above are based on a large 

number of projects, particularly early development and mature fields undergoing waterflooding or steamflooding to maintain or improve 

production volumes. 
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Key Terms

• Forecast – Quantitative description of the oil, gas, and water 
production from a reservoir as a function of a defined development 
plan.

• Model – Numerical, often grid-based representation of the 
subsurface properties such as porosity, permeability, and saturation.

• Optimistic Forecast – Actual hydrocarbon production of a given 
project is less than that forecast at the time the project received 
financial sanction (approval)



Are Production Forecasts Optimistic?



Are Production Forecasts Optimistic - Yes
• For example, Nandurdikar and Wallace 

reported in 2011 based on an Independent 
Project Analysis Inc. (IPA) study, that major 
capital projects were delivering, on 
average, only 75% of production forecast at 
the time of financial sanction.

• Major reasons for optimistic forecasts:
• Optimistic subsurface assumptions  

• Failure of internal assurance/review processes

• Lack of accountability for production volumes 
including project decision look-backs *Failure to Produce: An Investigation of Deficiencies in Production Attainment 

(Nandurdikar and Wallace, 2011, SPE 145437)



Why Are Production Forecasts Optimistic?
1. Underlying geological models may not adequately model reservoir 

heterogeneity due to model parameter choices.

2. Original or remaining hydrocarbon in place too high
• Sparse and/or non-representative data that is often biased towards 

better reservoir quality 
• Inadequate or improperly used analog data and/or uncertainty 

assessment workflows

3. Reservoir simulation models that are inadequate due to grid size, up-scaling, 
and/or the use of well location optimization workflows.

4. Human Biases
• Technical team “sourced” bias
• Management “sourced” bias



Impact of Model Grid Size

• Geological models typically now have tens to hundreds of million of 
model cells.   

• Reservoir simulation models typically have only a million or so model 
cells due to run-time “limits”.

• Consequently, geological models are generally up-scaled.

• An impact of up-scaling may be the loss of “geology”, particularly 
permeability contrasts (e.g. barriers/baffles, thief zones).



Impact of Model Grid Size On Forecast Recovery

Coarse Model forecast 10-15% more 
oil than a Giga-Cell Reservoir Model 
(After Obi et al.,2014)

Larger model cell size = More optimistic recovery



Impact of Model Grid Size On Breakthrough Time

Larger model cell size = Slower Steam 
Breakthrough

From Meddaugh at al., 2012
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Field Data – Wafra First Eocene Pilot



Impact of Model Grid Size On Breakthrough Time

Larger model cell size = Slower Steam 
Breakthrough

From Meddaugh at al., 2012

Field Data – Wafra First Eocene Pilot
Hot Water at Producing Well in about Four Days



Possible Reasons for Rapid Well Response to 
Steam Injection

• High permeability pathways
• Fractures

• Karst zones

• Stratigraphy or diagenesis-
related (connected vugs)

• Connected very high 
permeability “paths” not due to 
any of the above
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Possible Reasons for Rapid Well Response to 
Steam Injection

• High permeability pathways
• Fractures

• Karst zones

• Stratigraphy or diagenesis-
related (connected vugs)

• Connected very high 
permeability “paths” not due to 
any of the above

Preliminary Permeability Values

X-Perm = 6700mD
Y-Perm = 6100mD
Z-Perm = 6900mD

Preliminary Permeability Values

X-Perm = 720mD
Y-Perm = 710mD
Z-Perm = 790mD

Porosity of Both Samples is About 35%
From Meddaugh at al., 2012



How Well is Reservoir Heterogeneity Captured 
in Reservoir Models?

1. Model Grid Size and Number of Cells

2. Spatial Continuity as modeled by the semivariogram for point-based 
methods or the geometry of objects in object-based algorithms

3. Stratigraphy – Detail and Continuity



How Well is Reservoir Heterogeneity Captured 
in Reservoir Models?

1. Model Grid Size and Number of Cells – More is Better

2. Spatial Continuity as modeled by the Semivariogram for point-
based methods or the geometry of objects in object-based 
algorithms

3. Stratigraphy – Detail and Continuity



Semivariogram Basics

• Semivariogram (γ) – Measure of 
spatial continuity or 
heterogeneity

• Range parameter (h) – Increases 
as the spatial continuity of the 
property of interest (e.g. 
porosity) increases
• Small h = More Heterogeneity
• Large h = Less Heterogeneity



Impact of Semivariogram

• Top – Cross sections through 
models generated with 1000m 
range and 100m range

• Bottom – Comparison of forecast 
recovery for waterflood and 
steamflood.  Note very small 
difference for waterflood and 
essentially no difference for 
steamflood 



Impact of Stratigraphic Detail – Northwest 
Stevens Reservoir, Elk Hills

(Meddaugh, 2006)



Impact of Stratigraphic Detail – Northwest 
Stevens Reservoir, Elk Hills

• Cases studied:
• Two marker (top, 

bottom only)

• Three “major” 
markers

• Nine “detailed” 
markers

(Meddaugh, 2006)
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markers
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Impact of Stratigraphic Detail – Northwest 
Stevens Reservoir, Elk Hills
• Summary of fluid flow 

results obtained from 
twenty realizations for 
each of the three levels of 
stratigraphic detail shown 
at right

• Note that there is little 
difference in recovery or 
breakthrough time for 
the three cases

(Meddaugh, 2006)



Impact of Sparse Data – Simple Case  
• Forecast, as a function of well drilling order 

is shown in table at bottom.  Forecast is 
based on a data set consisting of 18 analog 
reservoirs.  

1. One well forecast recovery range is 
27-51%

2. Two well forecast recovery range is 
34-46%

3. Three well forecast is 40%

• Impact of sparse data on forecast may be 
large; about 10-15 RFUs in this “very 
simple” example. (From Meddaugh, 2015)



Impact of Sparse Data – Real Case  
• Variation of OOIP 

as a Function of 
“Time” for the 
Humma Marrat 
Reservoir



Impact of Human Bias – A “Synthetic” Case  
• Evaluation of Potential Technical 

Team or Management “Induced” 
Bias to Move a Project Towards or 
Away from Project Sanction

• An “experiment” was done 
(Gilbert et al, 2015; Meddaugh 
2015) in which a group of student 
volunteers were given specific 
instructions (next slide) and an 
“exhaustive” analog data set with 
18 reservoirs with known 
reservoir properties and ultimate 
recoveries (shown at right)



Impact of Human Bias – A “Synthetic” Case 

The “Experiment” Set-Up

Pro-Project Bias Anti-Project Bias



Impact of Human Bias – A “Synthetic” Case  

• The Recovery Forecast 
“Experiment” Results:
• Most Optimistic Student Forecast (45% 

of OOIP) with Applied “Project 
Forward” Bias Shown by Red Star

• Most Pessimistic Student Forecast 
(33.5% of OOIP) with Applied “Project 
Termination” Bias Shown by Blue Star

• Conclusion – Human Bias Impact Can 
Be Quite Large; Easily 5-10 or more 
RFUs



Summary of Potential Recovery Forecast Bias 
Sources, Impact, and Direction

Bias Source Magnitude in Recovery Factor Units 
(RFUs)

Direction of Bias – Optimistic, Pessimistic, or 
Either

Reservoir Modeling 
Parameters 

Small, less than 5 RFU. Either

Vertical Upscaling Small, less than 5 RFU. Optimistic

Horizontal  Upscaling, Areal 
Cell Size

Small to Large, likely between 5-15 
RFUs

Optimistic

Well Location Optimization Large, likely between 5 -15 RFU.  May 
tend to be larger for strongly 
anisotropic reservoirs (e.g. 
channelized)

Optimistic though additional study is much 
needed.

Sparse Data Large, likely between 10-15 RFUs Either; will be optimistic if early wells sample 
higher quality reservoir volume as is the “usual” 
case

Human Decision Bias Moderate, at least 5-10 RFUs; maybe 
higher (up to 15 RFUs)

Either; will almost certainly be optimistic given the 
typical “need” to move projects towards sanction

From Meddaugh and Meddaugh., 2018



Key Message

• Human, workflow, and software choices drive forecasts towards significant 
optimism

• Many of the optimism “sources” may be mitigated by:
• Better use of statistics and analogs
• Wider knowledge of the impact of modeling parameters and well optimization (not 

discussed in this talk) on forecasts
• Enhanced use of management-independent peer teams and assurance processes to 

reduce human-induced optimism in forecasts

• Bottom line 
• Better forecasts = Better use of capital and improved company financial performance 



Better Practices

• Incorporate larger range of uncertainty – respect the potential impact of 
sparse data as well as the potential “non-randomness” of sparse data

• Use models with small areal grid block (cell) sizes – larger number of 
smaller cells is much better!

• Increased use of actual reservoir lookbacks to assess impact of sparse data 
on in-place volumes and forecasts

• Increased use of external peer reviews to reduce project team and 
management bias



A Closing Thought or Question – How Well
Do We Really “Know” Our Data?



Thank You




