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Abstract 

Matrix permeability is a key petrophysical parameter in reservoir evaluation and simulation. However, measurement of this parameter still 

remains problematic for unconventional reservoirs. One of the biggest challenges lies in the influence of fractures, which can be artificially 

induced and are ubiquitous in almost all shale plug samples. Inclusion of fractures in measurement and data interpretation can lead to 

overestimation of shale-matrix permeability. In this study, new experimental and data analysis procedures are developed for more accurate 

measurement of shale matrix permeability based on a previous work (Peng and Loucks, 2016). The new experimental procedures also allow 

fast pressure equilibrium and takes 15-60 minutes, which is less time than that compared to other methods such as pulse-decay or steady-state 

methods. Permeability and porosity values under confining pressure are obtained from quantitative analysis on measured pressure-decay curve 

for oven-dried samples. The influence of fractures on matrix porosity and permeability is quantified and excluded. Reliability and consistency 

of the measurement results are confirmed through multiple means, including analytical solution back-calculation, numerical modeling, and 

multiple measurements for similar samples but with different plug diameters. Because the influence of fractures is explicitly excluded in the 

data analysis, the new method is also more flexible regarding sample conditions – even broken plug samples with fractures can be used in this 

method. This is another advantage of the new method given the difficulty in obtaining “intact” plugs because of the fissility of shale. The newly 

developed method can thus serve as a fast yet reliable technique for “real” shale matrix permeability measurement. Measurement results for 

50+ shale samples with detailed lithofacies information will be presented. 
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Problem statement and motivation
• Shale matrix permeability is important to identify: 
• 1) sweet spots; 2) source of high water cut

• However, the correlation between oil/gas production and permeability data is vague
• What causes the vague correlation?
• Inconsistent/inaccurate measurement of shale matrix permeability
• Influence of fractures: the biggest challenge
• A lack of measurement on relative permeability

• Objectives:
• Develop a method that is more accurate and reliable
• Specifically a method that can quantify and exclude the influence of fractures
• Can be used for relative permeability measurement

A modified gas expansion (MGE) method

• Problems in our previous study (Peng and Loucks, 2016): 
• Influence of fractures still existed: permeability increased with the plug diameter
• A lack of validation of the analytical solution

• Further modifications
• Shorter plug length: 5-7 mm, leading to a faster experiment (30-60 min)
• More accurate porosity measurement
• Modification and validation of the analytical solution
• Calibration using numerical modeling
• Multiple measurements: 1-inch vs. 1.5-inch plugs
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Linear relationship with time Validation of analytical solution & 
calibration with numerical simulation

The change of fractures with confining pressure and the 
influence on porosity and permeability

• Deviation of analytical solution back-
calculated pressure-decay curve from 
measured curve indicates the change 
of fractures

• Fractures are compressed under 
confining pressure
• Change from non-measurable to 

measurable
• Measurable fractures add to 

porosity, and
• Formed a higher-perm layer
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• Change of total measured porosity and apparent matrix 
porosity with confining pressure for sample an Eagle Ford 
sample. 

• Arrows indicate the direction of decreasing or increasing 
confining pressure. 

• The change of matrix permeability (km) and total measurable 
permeability (kt) with confining pressure.

• Total measurable permeability is generally larger than matrix 
permeability. 

• Arrows indicate the direction of decreasing or increasing 
confining pressure. 
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• Influence of fractures exists for all samples, but the influence varies

Permeability: 1-inch vs. 1.5-inch plugs
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• Matrix permeability from 1- and 1.5-in plugs of the same sample
• The 1.5-in plug has an open crack
• Close values of permeability are obtained
• Further verification: matrix permeability (not fracture 

permeability) is measured

The change of matrix and fracture porosity
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• Gas permeability measured at different saturation
• Modified Brooks-Corey equation for water relative 

permeability
• Residual gas saturation (where krg = ~0) is a key parameter in 

determining the shape of the curves, and 
• It is a function of wettability, pore shape, and connectivity

Porosity-permeability relationship and lithofacies
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• ~60 samples from different wells and 
formations: Austin chalk & Wolfberry

• Relative trend for some lithofacies: 
• Calcareous mudrock ( ): general low 

perm
• Siliceous mudrock ( ): lower porosity-

permeability relationship
• Wackestone/packstone ( ): low por, low 

perm
• No clear trend for most other lithofacies

Relative permeability measurement using the MGE method
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Sample #1, krg
Sample #1, krw
Sample #2, krw
Sample #2, krg
Sample #3, krg
Sample #3, krw
Sample #4, krg
Sample #4, krw
Sample #5, krg
Sample #5, krw
Sample #7, krg
Sample #7, krw

• Fast decline of krg and relatively slower increase of krw Can 
explain the fast decline of gas production while the increase 
of water saturation is not significant
• Can also explain the low gas production when water-cut is 

low
• Combining effect from layers with different relative perm
• Can lead to decent gas/oil production but with high water-

cut

Conclusions: the MGE method is reliable, faster, and makes direct gas relative 
permeability measurement possible.

• Matrix porosity: 
estimated based 
compressibility

• Fracture porosity: non-
negligible
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