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Abstract 

Seismic technology’s advance over the last three decades, particularly the transition from 2D to 3D, has seemingly rendered 

enormous volumes of vintage 2D data obsolete. However, innovative methods applied to these legacy assets provide paths for 

extraction of valuable new insights at very low marginal costs. Here, automated pattern recognition techniques were utilized in 

the analysis of a set of more than 7,000 2D poststack, migrated SEG-Y lines, covering approximately 400,000 km2 (154,441 

mi2) across the main petroliferous area of the Gulf of Mexico, producing a basin-wide map of top of salt. 

Two analytic approaches were taken to the unsupervised machine identification of salt in old (pre-1992) seismic time sections. 

The first, based on image texture analysis, assigned a salt-likelihood score to each pixel in a seismic section through application 

of a grey-level co-occurrence matrix and statistics on the resultant rasters. Several texture statistics were found efficient for 

differentiating salt and non-salt regions. The second, based on vector analysis of reflectors extracted from seismic images, 

discriminated salt/non-salt based on the densities of low-dip and high-dip reflectors. 

These measures were evaluated, without interpreter intervention, and combined to estimate salt/non-salt boundaries in sections 

with salt and to identify sections with no salt. Levels of confidence in the boundaries were statistically estimated to convey 

certainty in the existence and location of the salt boundaries. 
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Final estimates of the top of salt were contoured in time. Based on a data set of more than 3,000 velocity surveys, the time 

contours were transformed to depth. A 3D surface was estimated on the depth map so the salt surface could be visualized and 

further studied in a basin-wide 3D geographic information system in which other geologic, geophysical, production and facility 

data were available.  

 

Processing each line took several minutes of computer time. However, the analysis can be easily parallelized, reducing the 

computational impediment to batch machine analysis of thousands of lines.  
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Can Machines Learn at 

a Basin Scale? 

• 20 yrs developing automated salt recognition in seismic

– Experiments based on a few lines from a single, modern survey

– Usually employ “supervised” learning algorithms – high expert input

• Big returns to machine learning come from:

– Application to massive data sets

– Methods robust for old, disparate, noisy data

– Probabilistic evaluation of certainty of results

• Test by mapping basin-wide top of salt for Gulf of Mexico

– 8,000+ 2D SEG-Y files: >250,000 line-miles covering ~ 100,000 mi2

– Old, disparate data: 82 surveys shot from 1981 – 1992

– Minimize expert costs by “unsupervised” learning algorithms

• New value from massive legacy seismic resources

• Foundation for iterative supervision approach



Data Coverage
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Data Coverage

Fields with Salt-Related Trapping      Fields with Other Trapping



Salt’s Seismic “Texture”



51x51 search window

Target Pixel

GLCM
Grey Level Co-occurrence 

Matrix

Grey level = 1Grey level = 4
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Grey level = 2Grey level = 3

Compute probabilities for

all co-occurrences = GLCM

Compute statistics for GLCM

Assign statistics to pixel 

as attributes

.01 .004 0 0 0.7 0 0.06

0 .08 .03 .09 .01 .02 0

0 .01 .02 0 0 .05 0

0 .03 .005 .1 .05 0 0

0 0 .07 .03 .06 0 0

0 .008 0 .002 0 0 0

0 0 .04 .001 0 .06 .09

 
 
 
 
 
 
 
 
 
 
 

Then move to the next pixel & repeat



GLCM Statistics

Of suite of 8 GLCM statistics computed, choose 

– Best salt/non-salt discriminators

– Minimization of false positives (classifying salt when non-salt)



Reflector Analysis
• Analyze whole reflectors for information on salt

– Clear connection to geology

• Salt is bounded by strong dipping reflectors

• Reflectors limit the location where salt is located

– Independent information on the location of boundaries between 

salt/non-salt

Bedded Rock

Dipping Reflectors



How are reflectors extracted?

-Apply “Raster to Polygon” tool in ArcInfo to produce polygons 

around reflectors 

-Extract polygons & lines in ArcPro (GIS)

-Attribute lines (reflectors) from data on enclosing polygons

Reflector Analysis



Geometry of High-Angle 

Reflectors
• Paired high-angle reflectors indicate boundary of salt

– Look at only high dipping and strong reflectors

High reflector densities bedded section outside salt

Paired high-angle 

“chevron”

reflectors

Salt

Strong low-angle 

reflectors

Non-paired 

high-angle 

reflectors



Reflector Density Attribute
• Salt domes: 

– few, short, randomly oriented reflectors → low densities

• Bedded rock:

– many, long, oriented reflectors → high densities 

Low reflector densities in saltHigh reflector densities bedded section outside salt

Image of Original Line Density of Reflectors



Create Salt Score & Threshold

• Normalize Parameters:
– Convert to 0-1 scale:

• Texture: GLCM entropy, homogeneity, dissimilarity & contrast 

• Reflector: density of reflectors

– Treat as 0/1 dummy:
• Reflector: Area between high-angle, “chevroned” reflectors 

• Average 6 normalized parameters → “Salt Score”

• Estimate optimal threshold to discriminate salt/non-salt pixels
– 2-class clustering of Otsu (1979)

• Extension of Fisher’s discriminant analysis

• Divide pixels into 2 groups to minimize within-group variance of Salt Score and 

maximize between-group variance of Salt Score 

– Output = binary image (salt = white; non-salt = black)



Salt Score & Threshold

Salt Score

Original

Threshold



Morphological Clean-Up

After

Threshold

Morphological

Cleanup

Boundary

Extracted



Top of Salt 

not found

Top of Salt =

500 (pixels) * 4 ms = 

2 seconds

Top of Salt = 

0.57 seconds

Top of Salt = 

1.4 seconds

Top of Salt: Time



Time→ Depth

Estimated Velocity Field Using Velocity Surveys



Estimated Top of Salt



Boundary & Feature Evaluation

• Evaluate boundaries by gradient of texture (GoT)
– Characterize pixel intensity on both sides of boundaries

– Remove polygons with boundaries having GoT < 0.9 (GoT)Biggest

High Average 

Intensity of 

Pixels

Low Average 

Intensity of 

Pixels

The difference between 

the rectangles is large 

(High Gradient of Texture)

The average intensity 

between these two 

rectangles is about the 

same (low Gradient of 

Texture)



Coarse Accuracy – 2D

-Hand-Mapped Salt from 1990s (Purple Polys)

-Salt-Trapped Fields (Blue-Striped Polys)

-Bathymetry Overlaid with Top of Salt



Coarse Accuracy - 3D

EI205SM073



High-Resolution Assessment 

of Salt Boundary Accuracy

Nav Line

Grade for Line:

Color Grade
% of 

Line

Wt’d

Grade

Black 4 69 2.75

Yellow 3 24 0.74

Red 2 7 0.15

Total 3.61

Point-Wise Grade:

• Decimate Graded Line

• Estimate Grade Surface

via Kriging

• Estimate Prediction Error

Surface

• Produce Regional Maps



Regional Certainty Map



Results & Conclusions

• Workflow of unsupervised learning algorithm + macro 

editing produced reasonable regional salt map for GOM

– Domes recognized with high accuracy & good spatial precision

– Supplemental model needed for slope due to change in salt morphology

– Survey/regional problems revealed in macro-editing: fixed or dropped

• Very low marginal cost to exploit large legacy assets

– Do project starting with 8,000 SEG-Y files
• About 2 weeks of expert time

• About 400 hours of (desktop) computer time

– Methods robust with variety of surveys and old data

– Same techniques apply to modern data with much higher returns

• Unsupervised project is foundation of iterative model 



Next Step: Iterated Supervision

2. Get graded boundaries 

from unsupervised 

classification

3. Intelligently sample

results & 

retain grading

1. Run unsupervised/

macro-editing 

workflow

4. Build very large, 

labeled & graded 

exemplar library

5. Execute

supervised

classification

6. Extract updated

parameters for 

new iteration of

unsupervised

8. Rerun

unsupervised 

with new 

parameters

7. Adjust raster & 

vector parameters for new 

unsupervised iteration

Stopping Rule: Convergence

Of Successive Iterations < α




