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Abstract 

The Canyon Creek Field is a Laramide-age four-way closure draped with gas-charged Almond Formation sandstones. Gas production from the 
Almond Formation sandstones does not conform to a simple accumulation model with uniform charge to a structural spill point. For economic 
field development to proceed, a more detailed understanding of the controls on this complex production behavior is required. 

Two cores were cut in the same parasequence (one updip, one downdip) to understand the reservoir quality controls on production variability. 
Initial production from the updip well had a cored zone IP of 300 mcfd based on production logs, while the downdip zone IP was 44 mcfd. 
Core analyses demonstrate that routine porosity and Dean Stark water saturations are indistinguishable from an updip to a downdip position. 
Grain size and facies are generally consistent between the two cores. Routine permeability data fall within the same range. 

Each well had a high and low porosity sample selected for porous plate capillary pressure tests. Each sample was drained to 400 PSI and the 
relative permeability to gas (Krg) was measured at the endpoint saturation of the test. For the high porosity samples, the updip well has a Krg 
that is three orders of magnitude higher than the downdip well. Average grain size in the updip sample is medium, while in the downdip sample 
the average grain size is fine. Thin section analysis demonstrates that the updip sample has a greater abundance of pores which are not occluded 
by diagenetic minerals, while the downdip sample has porosity that is mostly occluded by fibrous illite. Based on these data we demonstrate 
that the presence of diagenetic illite in the pore system has a strongly negative effect on Krg in the Canyon Creek Field, but negligible effect on 
other routine permeability measurements. We conclude that early gas charge into relatively high-quality reservoirs, with larger grain size and 
lower capillary entry pressure, prevented fibrous illite growth and preserved thin, higher permeability pathways in the reservoir, leading to 
improved flow rates. In the absence of early charge, reservoirs in downdip positions had significant fibrous illite growth which, when combined 
with the relatively high Almond Formation water saturation, led to sub-economic gas flow rates. 
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Modified from Johnson, R.C., et al. 2005

Regional Mesaverde Stratigraphy



Almond Structure Map



Almond Parasequence Sand Map



Cored well locations

There is 200’ of structural relief between both cores
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Cored well locations

A
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• Does productivity 
decline because the 
rock is too tight? 
(Quartz overgrowth?)

• Does productivity 
decline because water 
saturation is too high? 
(permeability jail?)

• Is there some other 
controlling factor?



Core Photos



Core porosity comparison
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Cored well petrophysics

CC 64 CC 178
NetRes (ft) 64 68
NetPay (ft) 27 1
Avg Sw log (%) 68 79
PL Rate (mcfd) 300 44



Initial results
• We might pat ourselves on the back for being 

clever enough to
o Build a PHIE model that matches core porosity
o Calculate an Archie Sw that matches observed production behavior

• We might conclude that the reservoir, as water 
saturation increases, progresses to permeability jail 

• If we stopped here we’d miss a big part of the 
story...

• Dean Stark and capillary pressure data point to a 
more complex story:

CC 64 CC 178
NetRes (ft) 64 68
NetPay (ft) 27 1
Avg Sw log (%) 68 79
Avg Sw DS (%) 57 55
PL Rate (mcfd) 300 44



Cap Pressure Curves – High Porosity

1-5-S 1-9-S

CC 64 CC 178

Krg = 0.00013 md
Φ = 13.5% 

Krg = 0.018 md
Φ 11.9%



Cap Pressure Curves – Low Porosity

1-84-S1-68-S

CC 64 CC 178

Krge = < 0.000005 md
Φ = 9.5% 

Krge = < 0.000005 md
Φ = 6.6% 



High Porosity Thin Sections
CC 64 CC 178

Secondary grain dissolution pores > 
primary intergranular pores, 
micropores within altered/partially 
leached grains and between 
authigenic clay crystals; few 
primary and secondary pores are 
partitioned by authigenic fibrous 
illite 

Primary intergranular pores > 
secondary grain dissolution pores > 
micropores within partially leached 
grains and between authigenic clay 
crystals; many primary and 
secondary pores are partitioned by 
authigenic illite 

50X

200X



Low Porosity Thin Sections
CC 64 CC 178

Secondary grain dissolution pores > 
primary intergranular pores > 
micropores associated with 
altered/partially leached grains and 
authigenic clays; some primary and 
secondary pores are partitioned by 
fibrous illite 

Primary intergranular pores > 
secondary grain dissolution pores > 
micropores within partially leached 
grains and between authigenic clay 
crystals; some primary and 
secondary pores are partitioned by 
fibrous authigenic illite 

50X

200X



Pore Filling Illite
• Fibrous (pore-filling) illite has the following properties:

o High surface area to volume ratio
o Pore-bridging texture
o Significant microporosity

• Pore filling illite is known to have the following 
effects on reservoir quality:
o Mobilizes upon production
o Plugs/clogs/bridges pore throats
o Reduces permeability
o Increases irreducible water saturation
o Increases flow path tortuosity
o More detrimental, due to fiber morphology, than quartz, calcite or other 

cements
o Detrimental effects increase with decreasing porosity and permeability

Lander & Bonnell, 2010



Paragenetic Sequence
• Pyrite replacement (minor)
• Siderite replacement of siliciclastic grains (mostly 

mudstone fragments)
• Authigenic grain-coating clay (minor)
• Quartz overgrowth (abundant)
• Ferroan calcite cement (minor)
• Grain replacement by authigenic clay (abundant)
• Authigenic pore-filling kaolinite (abundant)
• Calcite (abundant)
• Ferroan Dolomite (abundant)
• Authigenic pore-filling illite (abundant)
• Titanium oxide minerals (minor)



Paleostructure at ~55 Ma

When charge occurred at ~55 Ma both cores were in a similar paleostructural position
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Lynds, 2016; Tobin et al, 2010



Current Structure
• At present there is 200’ 

of structural relief 
between both cores

• Updip core has 
experienced very little 
adjustment

• Downdip well likely 
experienced 
hydrocarbon 
remigration leading to 
imbibition of downdip 
water

• Water chemistry 
change could have 
induced the 
precipitation of pore-
filling fibrous illite 

A

A’

Shanley & Cluff, 2015



Conclusions
• The presence or absence of fibrous illite in the pore space of 

our reservoir appears to be the most likely determinant of 
reservoir productivity 

• Capillary pressure, thin section, and paragenetic sequence 
work provided the most helpful insight into the reservoir 
controls on production

• Routine core analysis, by itself was insufficient in determining 
reservoir controls

• The presence of a fraction of the reservoir without fibrous illite 
allows for economic production

• Structural evolution of the accumulation and its relation to 
petroleum and diagenesis may be a mechanism to explain 
both the similarities and differences in reservoir productivity

• Structural history mapping may provide a useful tool in 
predicting reservoir quality distribution in other fields with post-
charge structural modification
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