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Abstract 

 

In the Cenomanian-Turonian Woodbine and Eagle Ford Groups in the Brazos Basin, XRF chemostratigraphy highlights significant mudstone 

chemical heterogeneities that are often difficult to observe or quantify at the macroscale. Several key elements, Ca, Si, Mo, Mn, and Ni, were 

correlated to depositional conditions and used in a hierarchical cluster analysis to characterize five chemofacies across ten cores in the 

Woodbine and Eagle Ford groups: (1) argillaceous, OM-poor; (2) transitional, OM-poor; (3) transitional, OM-moderate; (4) calcareous, OM-

rich; and (5) calcareous, OM-moderate. Characterizations of organic matter richness, mineralogy, and environmental conditions of deposition 

were established by correlations between key element abundances, TOC measurements, XRD measurements, and petrographic observations of 

lithologic composition, bioturbation, and sedimentary textures. Combined observation redox-sensitive trace element enrichment and 

petrographically observed textures indicate that all chemofacies were deposited in an intra-shelf basin above storm-wave base. The most 

organic-rich chemofacies was deposited on a dysoxic (not anoxic) distal shelf. Mudstone organic matter enrichment is driven dominantly by the 

minimization of siliciclastic dilution and secondarily enhanced by oxygen-restriction.  

 

Regional correlations of chemofacies within a sequence stratigraphic framework developed from previous outcrop and subsurface work 

indicates a clear relationship between interpreted stratigraphy and chemofacies deposition. Generally, the highstand sequence sets of the 

Woodbine Group and Upper Eagle Ford Formation are dominated by clay-rich, OM-lean, siliciclastic dilution and contain poor quality source 

rock. Conversely, the transgressive sequence set of the Lower Eagle Ford Formation is dominated by OM-rich pelagic carbonate accumulation 

and contains excellent quality source rock. 
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Figure 7. Cross-plots of elemental, mineral data, and TOC data, colored by chemofacies.
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Figure 8. (Left) Summary parameters for each chemofacies and a depositional model 
for the spectrum of facies observed.

Figure 9. (Above) Elemental ternary and histogram distributions of key parameters, 
colored by chemofacies. 

0 1 2 3 4 5

4

3

2

1

0

Bioturbation Index (Lazar et al. 2015)

Se
di

m
en

t E
ne

rg
y 

In
de

x

68% of Facies Measurements

33% of Facies Measurements

Figure 16. (Left) Geochemical 
profiles for Core D as correlated to TOC, 
XRD mineralogy, gamma-ray logs and 
deep-resistivity logs. Well location is 
shown in Figure 1. Track descriptions: 
(1) Sequence stratigraphic 
nomenclature used for this study. (2) 
Gamma-ray profile colored by 
chemofacies where core is available. 
(3) Relative depth track. (4) 
Deep-resistivity profile. (5) TOC 
measurements from core. (6) XRD 
mineralogy measurements of calcite, 
total clay, and quartz. (7) An 
element-to-mineral conversion 
model, calibrated to XRD mineralogy. 
(8) Calcium (Ca) profile. (9) Silicon (Si) 
profile. (10) Aluminum (Al) profile. 
(11) Potassium (K) profile. (12) 
Titanium (Ti) profile. (13) Iron (Fe) 
profile. (14) Molybdenum (Mo) 
profile. (15) Vandium (V) profile. (16) 
Manganese (Mn) profile. (17) Nickel 
(Ni) profile. (18) Sediment type 
characterized by both carbonate 
input and clastic dilution. Carbonate 
input is represented by calcium (Ca). 
Siliciclastic dilution is represented by 
the sum of silicon (Si), aluminum (Al), 
potassium (K), and titanium (Ti). Note 
the reciprocal nature of the two 
sediment types. (19) Organic matter 
(OM) preservation index indicated by 
the crossover of molybdenum (Mo) 
and manganese (Mn), which indicate 
reciprocal conditions of water column 
oxygenation (Mo enrichment = 
dysoxic, Mn enrichment = 
oxygenated). (20) Paleoproductivity 
indicator represented by enrichment 
factor nickel (EF Ni).

Clay-Dominated
Siliciclastic Dilution

Organic Matter 
Productivity

Stratigraphic
Unit

Source Rock 
Quality

Redox 
Conditions

Dominant
Chemofacies

HighLowLM-LEF GoodDysoxicCalcareous,
OM - Rich

ModerateModerateUM-LEF Fair to GoodSuboxicTransitional 
OM - Moderate

LowLM-UEF PoorHigh OxygenatedTransitional,
OM - Poor

LowHighMM-UEF PoorOxygenatedArgillaceous, 
OM - Poor

ModerateHighWOODBINE Fair SuboxicArgillaceous, 
OM - Poor

Figure 15. (Below)  Hand-contoured denisty cross-plots for bioturbation index (Table 2) 
and interpretted sediment energy index (Table 3), measured from 233 thin section 
characterizations. Sediment energy index is interpretted from observed sedimentary 
textures. Cross-plots indicate that, in general, bioturbation increases with increasing 
sediment reworking.  The most oxygen-restricted facies, the calcareous, OM-rich 
chemofacies, shows significant degrees of bioturbation and sediment reworking and thus 
is interpretted to be, at most, dysoxic. The calcareous, OM-moderate chemofacies is 
diagenetic, showing no bioturbation.

Figure 17. Regional cross sections 
showing correlation of stratigraphic units 
across the Brazos Basin. Flattened on the 
top of the LM-LEF Formation shown in 
Figure 16. The Woodbine Group thickens 
to the northwest, due to influences from 
the Woodbine Delta. The Middle Member 
of the Upper Eagle Ford Formation 
thickens significantly to the northeast due 
to influences from the Harris Delta. Note 
the lateral facies transition in the Lower 
Eagle Ford Formation across cores G, H, 
and J; chemofacies become more 
calcareous towards the west.

Table 4.  Summary of the defining characteristics of each stratigraphic unit.
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Figure 10. The argillaceous, OM-poor chemofacies occurs 
primarily as a parallel laminated argillaceous medium to fine 
mudstone. 

Figure 11. The transitional, OM-poor chemofacies occurs 
primarily as a wavy-parallel to wavy-discontinuous, laminated 
argillaceous fine mudstone. 

Figure 12. The transitional, OM-moderate chemofacies occurs 
primarily as a wavy-discontinuous, foraminiferal 
argillaceous-calcareous fine mudstone. 

Figure 13. The calcareous, OM-rich chemofacies occurs 
primarily as a wavy-discontinuous, foraminiferal calcareous fine 
mudstone. 

Figure 14. The calcareous, OM-moderate chemofacies occurs as 
two distinct diagenetic carbonates: a dolomitized foraminiferal 
calcareous fine mudstone (Figure 14A) and a thinly-bedded 
fibrous, calcite cement (Figure 14B and C). 
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METHODOLOGY

 The XRF chemostratigraphy of the Cenomanian-Turonian Woodbine and Eagle 
Ford Groups in the Brazos Basin was used to identify distinct chemofacies within a 
regionally correlative sequence stratigraphic framework. Chemostratigraphic 
correlations of high-resolution XRF measurements collected from ten cored wells 
highlight significant vertical and lateral chemical heterogeneities in these mudstones. 
Several key elements —Ca, Si, Mo, Mn, and Ni— were correlated to depositional 
conditions and used in a hierarchical cluster analysis to characterize five chemofacies 
throughout the Woodbine and Eagle Ford Groups: (1) argillaceous, OM-poor; (2) 
transitional, OM-poor; (3) transitional, OM-moderate; (4) calcareous, OM-rich; and (5) 
calcareous, OM-moderate. Characterizations of OM-richness, mineralogy, and 
environmental conditions of deposition were established by correlations between key 
element abundances, TOC measurements, XRD measurements, and petrographic 
observations of lithologic composition, bioturbation, and sedimentary textures. Although 
significantly enriched in redox-sensitive indicators, petrographic observations indicate 
that the most organic-rich facies was deposited within storm-wave base in a dysoxic 
environment with intermittent bottom-water current energy and bioturbation. Organic 
matter enrichment is achieved primarily through the minimization of siliciclastic dilution, 
not anoxia.

Figure 1 (Left). (A) Map of Texas showing the Eagle Ford Group 
outcrop belt, productive Eagle Ford Shale trend, delta systems, and 
major structural features during the Late Cretaceous. Modified from 
Wehner et al., 2017 and Donovan et al., 2015. Oil and gas well spots 
taken from IHS production data (IHS, 2018). (B) Inset map of Brazos 
Basin study area,  core locations, and digital well log locations for 
this study.

Study
Label

Core Length
 (ft/m)

XRF
Points 

XRD
Points

TOC 
Points

A

B

C

D

E

F

G

H

I

J

150' (46 m) 1,499 60 117

266' (81 m) 1,311 28 28

252' (77 m) 1,262 133 23

268' (81 m) 1,334 146 52

270' (82 m) 1,350 20 121

209' (64 m) 1,047 44 101

300' (91 m) 1,491 84 178

250' (76 m) 1,205 24 25

89' (27 m) 437 84 63

272' (83 m) 1,346 0 0

2,326' 12,282 623 708TOTAL

Thin
Sections

84

0

16

15

44

24

50

0

0

0

233

Table 1. Core data (XRF, XRD, TOC) for each of the ten wells, 
labelled A through J, in this study. 

 Five temporally and chemically-distinct sequence stratigraphic units were defined 
by key element variations and correlated to previously outcrop and subsurface studies.  
The Woodbine  Group forms an overall highstand sequence set, is dominated by 
argillaceous, OM-poor chemofacies deposition and contains fair quality source rock. 
The Eagle Ford Group is subdivided into five sequences. The Lower Member of the 
Lower Eagle Ford (LM-LEF) is dominated by calcareous, OM-rich chemofacies 
deposition and contains excellent quality source rock. The Upper Member of the Lower 
Eagle Ford Formation (UM-LEF) is dominated by transitional, OM-moderate 
chemofacies deposition and contains fair-to-good quality source rock. The Lower 
Member of the Upper Eagle Ford (LM-UEF) is dominated by transitional, OM-poor 
chemofacies deposition and contains poor quality source rock. Together the LM-LEF, 
UM-LEF, and LM-UEF Formations makeup a transgressive sequence set. The Middle 
and Upper Members of the Upper Eagle Ford Formation (MM-UEF and UM-UEF) form 
an overall highstand sequence set, are dominated by argillaceous-OM poor 
chemofacies deposition, and contain poor quality source rock.
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mega-cycles, and δ13C global isotope profiles are 
derived from the work of Ogg and Hinnov (2012). 
Modified with permission from Donovan et al. 
(2019).
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Figure 3. (Left) Type log (Core D) for the Eagle 
Ford and Woodbine Groups in the Brazos Basin. 
The stratigraphic nomenclature adopted for this 
study, based on work by Donovan et al. (2015, 
2019), is shown directly right of the type log. 
Nomenclatures from previous literature are 
derived by correlating from published 
cross-sections to the Core D (Adams and Carr, 
2010; Hentz et al., 2014; Denne and Breyer, 
2016). The gamma-ray log is colored by 
core-derived chemofacies.

HIGH-RESOLUTION XRF AQUISITION
  Energy dispersive x-ray fluorescence (ED-XRF) data were collected using two 
Bruker Tracer 5i handheld spectrometers on all ten cores. Data were collected every 
1.2” (3.0 cm) on Core A and every 2.4” (6.0 cm) on the remaining cores (Cores B 
through J). Significant testing (Figure 4) was conducted on Core F to establish the 
following collection parameters for this study. 
 Three elements were poorly detected by the handheld: Cu, Ba, and U; these data 
were therefore omitted from the study. Significantly high concentrations of Ca (>25%)  

Figure 5.  (Above) Photographs of handheld 
Bruker Tracer 5i spectrometer (A) with guard plate 
installed and (B) with guard plate removed. The 
guard plate increases the distance between the 
scintillometer and the core slab face, attenuating 
photo energy and decreasing detected 
concentrations. It was removed during the 
collection of XRF data used within this study.).

Figure 6. Dendogram visualization tree produced in TIBCO Spotfire® application used to sub-divide all elemental data across all cores into five chemofacies. Each column in the 
figure represents a column of elemental data in the spreadsheet of data for this study. Each row in represents a row of data in the spreadsheet tagged with one depth and one 
core name. The rows are not organized by depth or core; they are clustered based on the similarity of the elemental data in each column. This effectively allows the grouping of 
elementally-similar XRF data points across all cores.

interfere with the detection of many trace elements (e.g. Ni, V, Mo, Cr, Zn). Therefore, 
any data showing this interference was removed when portraying cross-plot 
relationships of these trace elements with other data. At any point where a plug was 
extracted for XRD mineralogy or TOC data analysis, care was taken to collect an XRF 
measurement as close as possible to the plug hole.

SPOTFIRE CLUSTER HIERARCHICAL ANALYSIS 

PETROGRAPHIC DESCRIPTIONS 

Table 2. Bioturbation index from Lazar et al. (2015) used to 
characterize sedimentological observations made in thin sections.

Figure 4. (Above Right) Testing conducted at selected depths to determine the most optimal procedures of use for the Bruker Tracer 5i handheld x-ray spectrometers. (A) 
Testing conducted for various scanning time intervals.  (B) Testing conducted between the two identically-calibrated handheld spectrometers, A and B, used in this study. (C) 
Testing conducting with and without the metal guard plate that comes pre-installed on the spectrometers and can be unscrewed and removed (see Figure 5). (D) Testing 
conducted between unwashed, lightly washed, and thoroughly washed samples.

Bioturbation
Index

Observed Features

0
1
2

4

5

3

No burrows visible; primary sedimentary structures preserved

Beds continuous, but a few burrows

Beds discontinuous, some burrows

Remnant bedding, burrows common

Very little bed continuity, burrows abundant

No remnant bedding, fully homogenized

Interpretation

Not bioturbated

Weakly bioturbated

Sparsely bioturbated

Mostly bioturbated

Strongly bioturbated

Churned

Sediment
Energy Index

Observed Features Interpretation

0 No scour surfaces, no mud rip-up intraclasts, no ripples, no graded laminations Lowest energy, no evidence of storms or currents

1 Scour surfaces, mud rip-up intraclasts Low energy, little evidence of currents and storms

2 Scour surfaces, mud rip-up intraclasts, fragmented skeletal grains, ripples Moderate energy, moderate evidence of currents and storms

3 Scour surfaces, mud rip-up intraclasts, fragmented skeletal grains, ripples, 
graded planar laminations High energy, moderate evidence of currents, waves, and storms

4 Scour surfaces, mud rip-up intraclasts, fragmented skeletal grains, ripples, 
graded  planar laminations with medium to course size quartz grains Highest energy, signifcant evidence of currents, waves, and storms

Table 3. Five classifications for common sedimentary textures observed petrographically in this study 
and corresponding interpretations for depositional energy.



Figure 18. Gross interval isopach, average elemental, and average TOC maps for each stratigraphic unit. For each column of map sets, maps were color-scaled the same, such 
that relative changes across unit can be conceptualized. All elemental maps were constructed by contouring the average value per stratigrpahic unit in each cored well across the 
basin. Average quartz and feldspar (QF) and total clay (TC) concentrations were calculated on cored wells using the element-to-mineral conversion model.
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Figure 19. Sequence stratigraphic and paleogeographic depositional model for the Woodbine and Eagle Ford Groups within the East Texas and Brazos Basins. 

 Mudstone deposition is complex even in the simplest of shale formations and 
depends on a variety of depositional processes. Often, variability is only discernible 
on the micro-scale and requires a higher-resolution analysis, especially when 
utilizing cores. XRF data is inexpensive, simple to collect across many cores, and 
can be correlated to TOC and XRD mineralogy. When corroborated petrographically, 
elemental proxies for mineralogy and organic-matter richness provide the basis for 
interpretation of chemostratigraphic boundaries and changes in regional 
depositional processes occurring within a shale basin. In the Woodbine and Eagle 
Ford Groups in the Brazos Basin, several key elements are identified and correlated 
to depositional conditions: (1) Ca indicates carbonate input, which is dominated by 
OM-rich planktonic fecal pellet deposition; (2) Si + Ti + Al + K indicates OM-lean 
terrigenous clay; (3) Mo and Mn are inverse indicators of redox conditions during 
deposition—high Mo and low Mn concentrations are generally favorable for OM 
preservation and enrichment; and (4) Ni records paleoproductivity and is favorable 
for OM deposition and enrichment.
 Five statistically-clustered chemofacies were identified from elemental analysis 
throughout the Woodbine and Eagle Ford Groups: (1) argillaceous, OM-poor; (2) 
transitional, OM-poor; (3) transitional, OM-moderate; (4) calcareous, OM-rich; and 
(5) calcareous, OM-moderate. These chemofacies highlight the high-frequency 
variability within an often macroscopically-homogeneous shale and have direct 
relationships with OM-richness. The argillaceous, OM-poor chemofacies represents 
the proximal facies with the most oxygenated, high-energy depositional conditions.  
The calcareous, OM-rich chemofacies represents the most distal facies with the 
least oxygenated, low-energy depositional conditions. Petrographic observations of 
current and bioturbation indicators suggest that the most oxygen-restricted 
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chemofacies was deposited in, at most, intermittently anoxic depositional conditions. In 
fact, all chemofacies are interpreted to be deposited an intra-shelf basin above 
storm-wave-base.
 Five chemically-distinct temporal packages are defined by variations in dominantly 
occurring chemofacies and major elemental shifts that coincide with major stratigraphic 
surfaces proposed by Donovan et al. (2018, 2019). The Woodbine Group, an overall 
highstand sequence set, is dominated by argillaceous, OM-poor chemofacies 
deposition, responding to siliciclastic input from the northwesterly-sourced Woodbine 
Delta. Deposition occurred in oxygenated conditions with moderate OM productivity 
resulting in fair-to-poor source rock quality. The erosional unconformity between the 
Woodbine and Eagle Ford groups is geochemically documented by the abrupt 
transition from argillaceous, OM-poor to calcareous, OM-rich chemofacies deposition. 
The LM-LEF, UM-LEF, and LM-UEF Formations comprise an overall transgressive 
sequence set and contain the least amounts of OM-lean terrigenous clay, which dilute 
the OM-rich, planktonic fecal pellet background suspension settling occurring on the 
shelf at this time. The LM-LEF Formation is dominated by calcareous, OM-rich 
chemofacies deposition on a dysoxic shelf, resulting in excellent-quality source rock. 
The UM-LEF Formation is dominated by calcareous, OM-moderate chemofacies 
deposition on an oxygenated to dysoxic shelf, resulting in fair-quality source rock. The 
LM-UEF Formation is dominated by transitional, OM-poor chemofacies deposition on 
an oxygenated shelf, resulting in poor-quality source rock. The MM-UEF and UM-UEF 
together comprise a highstand sequence set and are both dominated by argillaceous, 
OM-poor chemofacies deposition, responding to siliciclastic input from the 
northeasterly-sourced Harris Delta. Deposition occurred on an oxygenated shelf with 
low OM-productivity resulting in poor-quality source rock.
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