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Abstract 

 

To manage global climate change and maintain global mean surface temperatures within 2°C of the pre-industrial value, the 

Intergovernmental Panel on Climate Change has concluded that the cumulative amount of CO2 emitted to the atmosphere must 

be below 3600 GtCO2. But more than half of this budget has already been emitted, and meeting this aggressive goal requires a 

substantial reduction in CO2 emissions—between a 40% and 70% reduction by 2050 and even negative emissions (up to a 120% 

reduction) by the year 2100. For these reductions to be achievable there must be extensive investment in zero and low-carbon 

energy technologies, such as wind, solar, nuclear, and fossil fuel, the latter with CO2 capture and (geologic) storage (CCS). 

Estimates suggest that if CO2 emission mitigation efforts are delayed until 2030, the market share for these energy technologies 

will need to increase to approximately 90% by 2100 and costs will increase 40%. As such, there is an urgent need to deploy 

these energy sources. CO2 Plume Geothermal (CPG) combines CCS with geothermal resources to produce baseload and/or 

dispatchable renewable electricity with no CO2 emissions. With CPG, underground-stored CO2 is circulated to the surface, 

extracting heat from the naturally porous and permeable sedimentary basin. These geologic resources are more ubiquitous than 

the faulted systems presently used with natural geofluid (brine) geothermal electricity generation. Thus, CPG could be a vital 

part of climate change mitigation if it is spatially and economically viable. In this work, we combine our existing levelized cost 

of electricity (LCOE) models with geospatial data on sedimentary basins in the United States to conduct a resource assessment 

of the national potential for CPG systems. The results indicate that 7200 km
2
 of the U.S. has an estimated CPG LCOE less than 
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$50/MWh and 160,000 km
2
 has an LCOE less than $100/MWh, which are less than other dispatchable energy technologies, e.g. 

coal with CCS ($143/MWh) and natural gas peaking plants ($191/MWh). These LCOEs are also favorable when compared to 

other renewable energy technologies, like conventional geothermal ($98/MWh), wind ($47/MWh), and solar ($55/MWh), 

although the latter two are variable and not dispatchable. Unlike conventional geothermal energy, which is limited to the 

southwestern U.S., CPG could be extensively deployed in sedimentary basins in the central and eastern U.S. where average 

geothermal temperature gradients exist. 
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Puna, HI 8/38 MWe Plant     Source: Ormat  Alterra Soda Lake 15 MWe Facility – Fallon, NV 



Source: (Left) Ormat; (Right) britannica.com 
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Geysers—Middletown, CA 725 MWe Plant   Source: Calpine 

Existing Geothermal 



U.S. Geothermal development has stagnated 

Data Source: U.S. Energy Information Administration (EIA) 
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Agenda 

• Atmospheric CO2 is bad (>450 ppm) 

• Sequester, sequester 

• Use captured CO2 for geothermal 

• CPG can work better than brine 

• Potential for <50 $/MW CPG 

• CO2 availability limits its scaleout 

 



Data Source: Carbon Dioxide Information Analysis Center (CDIAC)  
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Source: (Top) IPCC 5th Assessment Synthesis Report  (Bottom) kplu.org 

IPCC: Reduction of 78% to 118% by 2100 is necessary 

to keep temperature increase below 2°C. 



Mitigation Measures 

o 
• o 

More efficient use of energy 

Greater use of low-carbon and no-carbon energy 
• Many of these technologies exist today 

Improved carbon sinks 
• Reduced deforestation and improved forest management 

and planting of new forests 
• Bio-energy with carbon capture and storage 

(J Lifestyle and behavioural changes 
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• 

IPee AR5 Synthesis Report 
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Source: Princiotta & Loughlin (2014) 
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Source: Princiotta & Loughlin (2014) 
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CPG is built on CCS 

Source: GlobalCcsInstitute.com 



Permeability and porosity vary. Source: USGS National Assessment of CO2 Resources (2013) 

3000 Gt CO2 

US: 5.5 Gt/yr 



CPG Basics 



Circulate CO2! 

 

CO2 is a better geothermal fluid because: 

• Low Viscosity 

• Similar Heat Capacity 

• Compressible 

• No or Few Pumps 

• Low Silica Solubility 



What is CO2 Plume Geothermal (CPG)? 

Source: Adams et al. (In Preparation) 

• CO2-based 

• Deep 

• Sedimentary 

• Scalable 



How a Thermosiphon Works 

plant 

Heat Out 

reservoir 

Heat In 

ρave = 800 kg m-3 ρave = 400 kg m-3 

z

isentropicwell dzgP
0

,

T = 15 °C 

T = 100 °C 

P = 25 MPa P = 25 MPa 

P = 5 MPa P = 15 MPa 

caprock 

surface 

2.5 km 

Injection and production wellhead pressure difference generated by thermosiphon 



Direct  
Primary Fluid: CO2 

Options: Thermosiphon –or – 

Supplemental Pumping 
Indirect 

Indirect  
Primary Fluid: CO2 or brine 

Secondary Fluid: CO2 or R245fa 

Source: Adams et al. (2015) 



Source: Adams et al. (2015) 
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A Direct CPG system provides more power than Indirect brine at low to 

 moderate permeabilities and depths. 

Source: Adams et al. (2015) 
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CPG systems produce more power at low to moderate permeability. 

Source: Adams et al. (2015) 
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Direct systems tend to be most efficient at 2.5 km, 50 mD. 

Source: Adams et al. (2015) 
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CPG has greater power at shallower depths 

Source: Adams et al. (2015) 
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CPG Economics 



System is Scalable 

Source: Bielicki et al. (submitted) 

For 5-spot:  

  10 Mton CO2 => 4 MWe 



Cost values from GETEM 

Source: Bielicki et al. (submitted) 

m = f(d2.5) 



Source: Bielicki et al. (submitted) mapped on Lazard (2015) 
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Multiple Data Sources Needed 

USGS NATCARB Princeton 

-Temp Only 

- Depth 

 

From Elliot et al. (2012) 

- Permeability 

- CO2 Volume 

- Occasionally Permeability 

- Occasionally CO2 Volume 



Source: Bielicki et al. (submitted) 
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Finding impact to future energy market 

• Global Change Assessment Model (GCAM) 

used to predict adoption of CPG 

– Population 

– Energy Consumption 

– Energy Supply Curves for all Technologies 

 

 GCAM is free for download from Pacific Northwest National Lab and 

University of Maryland 



CPG Energy Supply Curves 

$120/MW-hr 

$80/MW-hr 



CPG would be widely utilized 
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Conclusions 

• CPG can be used in sedimentary basins 

• CPG circulates CO2 to generate power 

• CPG can generate more power than 

 traditional brine 

• CPG has competitive LCOEs 

• CPG is economically viable at $120/MW-hr 

• CPG is limited by sequestered CO2 volume 


