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Abstract

To manage global climate change and maintain global mean surface temperatures within 2°C of the pre-industrial value, the
Intergovernmental Panel on Climate Change has concluded that the cumulative amount of CO, emitted to the atmosphere must
be below 3600 GtCO,. But more than half of this budget has already been emitted, and meeting this aggressive goal requires a
substantial reduction in CO, emissions—Dbetween a 40% and 70% reduction by 2050 and even negative emissions (up to a 120%
reduction) by the year 2100. For these reductions to be achievable there must be extensive investment in zero and low-carbon
energy technologies, such as wind, solar, nuclear, and fossil fuel, the latter with CO, capture and (geologic) storage (CCS).
Estimates suggest that if CO, emission mitigation efforts are delayed until 2030, the market share for these energy technologies
will need to increase to approximately 90% by 2100 and costs will increase 40%. As such, there is an urgent need to deploy
these energy sources. CO, Plume Geothermal (CPG) combines CCS with geothermal resources to produce baseload and/or
dispatchable renewable electricity with no CO, emissions. With CPG, underground-stored CO; is circulated to the surface,
extracting heat from the naturally porous and permeable sedimentary basin. These geologic resources are more ubiquitous than
the faulted systems presently used with natural geofluid (brine) geothermal electricity generation. Thus, CPG could be a vital
part of climate change mitigation if it is spatially and economically viable. In this work, we combine our existing levelized cost
of electricity (LCOE) models with geospatial data on sedimentary basins in the United States to conduct a resource assessment
of the national potential for CPG systems. The results indicate that 7200 km? of the U.S. has an estimated CPG LCOE less than
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$50/MWh and 160,000 km? has an LCOE less than $100/MWh, which are less than other dispatchable energy technologies, e.g.
coal with CCS ($143/MWh) and natural gas peaking plants ($191/MWh). These LCOEs are also favorable when compared to
other renewable energy technologies, like conventional geothermal ($98/MWh), wind ($47/MWHh), and solar ($55/MWh),
although the latter two are variable and not dispatchable. Unlike conventional geothermal energy, which is limited to the
southwestern U.S., CPG could be extensively deployed in sedimentary basins in the central and eastern U.S. where average
geothermal temperature gradients exist.
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Existing Geothermal
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U.S. Geothermal development has stagnated
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Agenda

» Atmospheric CO, is bad (>450 ppm)
« Sequester, sequester

» Use captured CO, for geothermal
 CPG can work better than brine

« Potential for <50 $/MW CPG

« CO, avallability limits its scaleout
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Warming versus cumulative CO; emissions
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Mitigation Measures

More efficient use of energy

Greater use of low-carbon and no-carbon energy
¢ Many of these technologies exist today

Improved carbon sinks

* Reduced deforestation and improved forest management
and planting of new forests

» Bio-energy with carbon capture and storage

D0

ﬁ Lifestyle and behavioural changes
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CPG Basics



Circulate CO,!

CO, is a better geothermal fluid because:
* Low Viscosity

« Similar Heat Capacity

« Compressible

* No or Few Pumps

« Low Silica Solubility



What is CO, Plume Geothermal (CPG)?
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How a Thermosiphon Works

T=15°C Heat Out
P =15 MPa P =5 MPa
surface plant
2.5 km
Pave = 400 kg M P..c = 800 kg m-3
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| of g Heat In

Injection and production wellhead pressure difference generated by thermosiphon
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Direct CO; - Pumped
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A Direct CPG system provides more power than Indirect brine at low to
moderate permeabilities and depths.
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CPG systems produce more power at low to moderate permeability.
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Direct systems tend to be most efficient at 2.5 km, 50 mD.
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CPG has greater power at shallower depths
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CPG Economics



System Is Scalable

Inverted Five-Spot Well Pattern Multiple Inverted Five-Spot and Five-Spot Well Patterns
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Cost values from GETEM
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Multiple Data Sources Needed
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Finding impact to future energy market

* Global Change Assessment Model (GCAM)
used to predict adoption of CPG

— Population
— Energy Consumption
— Energy Supply Curves for all Technologies

GCAM is free for download from Pacific Northwest National Lab and
University of Maryland
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Source of Electricity Produced

CPG would be widely utilized
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Conclusions

 CPG can be used in sedimentary basins
* CPG circulates CO, to generate power

PG can generate more power than
traditional brine

* CPG has competitive LCOEs
PG is economically viable at $120/MW-hr
* CPG is limited by sequestered CO,, volume

O

O




