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Abstract 

Quantifying source-to-sink sediment flux for stratigraphic systems is critical for accurate basin models, but all available methods are hampered 
by low precision and most require data not readily attained by common subsurface studies. The Fulcrum approach uses the variables of channel 
bankfull thickness and grain size to calculate sediment bankfull discharge and converts this to an annual sediment volume. The fulcrum 
approach uses commonly collected data but similarly yields only approximate flux estimates. In order to calculate a more precise source-to-sink 
estimate for long basin durations, the amount of time the fluvial systems runs at bankfull flow and the annual proportion of sediment 
discharged during this bankfull flow must also be determined. By categorizing fluvial systems by attributes such as drainage area and 
paleoclimate at the time of discharge, a more specified and accurate bankfull flow duration and total bankfull sediment discharge is estimated. 
We constructed a database that stores and categorizes these data. Daily stream gauge data spanning decades is used in conjunction with 
measured bankfull values from literature to populate the datasets for the database and derive stream specific data attributes. This bankfull flux 
searchable database evaluates stream gauge data for modern fluvial systems according to classes such as climate setting and is also a useful tool 
for identifying analog stream data scaled to drainage basin and channel size. It evaluates designated parameters of days within a year that the 
river runs at bankfull flow, as well as the yearly proportion of sediment discharged over bankfull duration. The database can thus yield a more 
accurate value for duration at bankfull flow and sediment discharge at bankfull from modern rivers that can be used as an analog for 
stratigraphic rivers with interpreted climate and size parameters. Preliminary results show a key breakdown in bankfull duration, with arid and 
temperate dry season rivers on the order of a fraction of day per year and wet temperate climates tending to be an order of magnitude longer 
and boreal climates still longer. Categorizing stratigraphic rivers by known climate and other parameters, can lower the total error in sediment 
flux from paleohydrology by a factor. 
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Presenter’s notes: Source-to-sink is the concept that evaluates the full journey of each grain, from the moment it is sourced from the highest peak through ultimate 
deposition in the deepest basin sink. Source-to-sink was first introduced conceptually by Meade (1972,1982)    (Presenter’s notes continued on next slide.) 



(Presenter’s notes continued from previous slide.) 
 
 and is defined as any erosional-depositional system where sediment is eroded, transported and deposited (Somme et al 2009). This system is comprised of a series 
of segments including: catchment or drainage area, shelf, slope and basin floor. Each segment can be independently affected by variables such as regional climate 
and tectonics (e.g. Wolman & Miller, 1960; Blum & Tornquist, 2000) and yet they are interrelated in that erosion or deposition within one segment will be 
manifested in morphological alteration within another (Moore, 1969).   
 
The ability to understand how each segment of this system interdepends and accurately estimate sediment flux through the source-to-sink system is critical to 
understanding ancient hydrocarbon systems or impacts of sediment flux on modern communities (Martinsen et al,2010).  
 
Whether applied to validating a source-to-sink flux interpretation, or facilitating a more complete basin fill analysis by supporting estimates on sediment supply, the 
need to most accurately estimate sediment flux is evident (e.g. Holbrook and Wanas, 2014; Hutton and Syvitski, 2008; Kettner and Syvitski, 2008; Parker et al, 
2008; Whittaker et al. 2010). Refining estimates on sediment flux is particularly significant within continental basin reservoirs where fluvial sandstones are common 
hydrocarbon targets for exploration (Bohacs, 2012).   



▪ Established methods for determining sediment flux from source to sink include: 

▪  Grain Sequestration 

▪ Catchment Approaches 

▪ Accumulated Basin Volume 

▪ Fulcrum Approach  

Source 

Sink 

( https://www.tes.com/lessons/V_fhRwq4swfO4Q/the-life-of-water-by-emmanuel-m) 
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Established Methods 

(http://www.globalrivers.org/wp-content/uploads/2014/09/AmazonBasin_DrainageNetwork_072014b.jpg) 
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( https://eoimages.gsfc.nasa.gov/images/imagerecords/3000/3309/landsat_lakeeyre_lrg.jpg ) 



▪ Established methods for determining sediment flux from source to sink include: 

▪  Grain Sequestration 

▪ Catchment Approaches 

▪ Accumulated Basin Volume 

▪ Fulcrum Approach  

Established Methods 

( Holbrook and Wanas, 2014) 



Pros  

▪ Uses readily available data such as channel 
bankfull/ thickness and grain size. 

Cons 

▪ Calculations currently rely on generic 
default values, only accurate within an 
order of magnitude. 

(Helland-Hansen et al., 2016)  

Fulcrum Approach 



 
 

Presenter’s notes: 4Based on the assumption that for sediment to be moved from source to sink it must pass through a cross sectional point, meaning by estimating 
the amount of sediment passing through this fulcrum point the amount of sediment moving from the source to the sink can be determined (Holbrook and Wanas, 
2014).    (Presenter’s notes continued on next slide.) 
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The basis for the Fulcrum approach is the assumption that for sediment to be moved from source to sink it must pass through a cross sectional point, meaning by 
estimating the amount of sediment passing through this fulcrum point the amount of sediment moving from the source to the sink can be determined (Holbrook and 
Wanas, 2014). While there are several established methods for determining sediment flux from source to sink all methods have limitations and are only accurate 
within an order of magnitude. 
 
The accuracy of the Fulcrum approach relies on estimating the duration of time a stream runs at bankfull flow (tbd) and the proportion of sediment discharged during 
this flow (b).  Mean annual sediment discharge (Qmas) is estimated for a channel by multiplying the variables of (tbd) and (b) against a calculated value for bankfull 
sediment discharge (Qbts), with full methods for calculation of (Qbts) provided in Holbrook and Wanas (2014) (Equation 1).  
       Qmas=Qbts(tbd)b   
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*bf 50 = (Hbf S)/(RD50) = const. 

Cf [(Qbf²) / Bbf²Hbf²)] = Hbf S 

Cf­­     = (8.32) (Hbf /ks)  -½ -1/6 

Qtbf=Bbf qtbf =Bbf (RgD50)    D50αt [фs         *bf 50-    *c] 
nt 

½ 
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Presenter’s notes: The accuracy of the Fulcrum approach relies on estimating the duration of time a stream runs at bankfull flow (tbd) and the proportion of 
sediment discharged during this flow (b).  Mean annual sediment discharge (Qmas) is estimated for a channel by multiplying the variables of (tbd) and (b) against a 
calculated value for bankfull sediment discharge (Qbts), with full methods for calculation of (Qbts) provided in Holbrook and Wanas (2014) (Equation 1).  
      

  Qmas=Qbts(tbd)b  

 

Bankfull flow is defined as the channel forming flow (Wolman and Miller, 1960) that fills the channel to the top of the river banks on the brink of spilling onto the 
floodplain (Williams, 1978). The effective discharge of a stream is defined as the averaged discharge that transports the largest percentage of the sediment annually 
(Andrews, 1980). Effective and bankfull discharge are not the same but do generally converge on the same value (Andrews, 1980). The bankfull channel dimension 
is determined by the flood that has sufficient erosive power and reoccurs often enough to be the dominating force shaping the channel, and the effective discharge is 
the most erosive flood, denoting these discharges would be similar. 
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Through DATA! 

Acquire 

Compare 

Bin 

Average 

Leverage 

 Compare collected bankfull discharge data to actual 

daily discharge values recorded at stream gauging 

sites. 

 Derive number of days annually each stream runs at 

bankfull flow. 

  

 

Site Number 03254550 

 Site Name: Banklick Creek  

 Bankfull Discharge: 21.21 m³/sec 

 Bankfull Channel Width: 21.96 m 

 Bankfull Channel Depth: .98 m 
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SITE NUMBER 03254550  

ANNUAL OCCURENCES 

WITHIN 10% OF BANKFULL FLOW (DAYS) YEAR 

2 2000 

2 2001 

0 2002 

1 2003 

0 2004 

1 2005 

0 2006 

0 2007 

1 2008 

0 2009 

1 2010 

2 2011 

1 2012 

3 2013 

1 2014 

1 2015 

0 2016 

Annual Average 0.94 (Days) 
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Through DATA! 

Acquire 

Compare 

Bin 

Average 

Leverage 

Climate : Dfa  (Cold Without 

dry season Warm Summer) 

 

 Drainage Area > 50 km² and 

<260 km² 

 tbd  = Streams runs at bankfull 

flow 5.7 days a year 

Example Query: 
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Qmas =   Mean annual sediment discharge 

Qbts  =   Bankfull sediment discharge (Qbts)  

tbd    =   Duration of time a stream runs at      
   bankfull flow  

b      =   Inverse of the proportion of the total  
  annual sediment load 

 

 

                     Qmas=Qbs          b 

 

 

                     (tbd) 
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Data Source 
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IDEAM: Institute of Hydrology, Meteorology 

and Environmental Studies: Colombia 

39 OPW: The Office of Public Works: Ireland 

432 
USGS: United States Geological Survey : 

National Water Information System 

Total Site Count: 524   

Number of Sites  

Acquired 

51 

7 

39 

514 

Total Site Count: 611  
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Number of Sites 
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Stream Size 

451 Small: Drainage Area < 2,000 km² 

67 
Medium: Drainage Area 2,001- 30,000 km² 
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Number of Sites Köppen Climate Classification Major Climate Climate Description 

5 Af Tropical Tropical Rainforest 
5 Am Tropical Tropical Monsoon 
1 Aw Tropical Tropical Savannah 

17 BSh Arid Arid Steppe Hot 
35 BSk Arid Arid Steppe Cold 
4 BWh Arid Arid Desert Hot 
2 BWk Arid Arid Desert Cold 

90 Cfa Temperate Temperate Without dry season Hot Summer 

41 Cfb Temperate Temperate Without dry season Warm Summer 
8 Csa Temperate Temperate Dry Summer Hot Summer 

36 Csb Temperate Temperate Dry Summer Warm Summer 
83 Dfa Cold Cold Without dry season Hot Summer 

158 Dfb Cold Cold Without dry season Warm Summer 
12 Dfc Cold Cold Without dry season Cold Summer 
7 Dsa Cold Cold Dry Summer Hot Summer 

17 Dsb Cold Cold Dry Summer Warm Summer 
3 ET Polar Tundra 

Data Inventory 



▪ Spatial Attributes 

▪ Drainage Area 

▪ Mean Bankfull-Channel Depth 

▪ Bankfull-Channel Cross-sectional  Area 

▪ Temporal Attribute 

▪ Bankfull Duration 

▪ Climate Categories 

▪ Major Climate 

▪ Köppen Climate 
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Accessibility: RAFTER Database 
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Bankfull Duration (tbd) vs. spatial attributes 
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Bankfull Duration (tbd) vs. spatial attributes 
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Proportion of Water Discharged During Bankfull vs. Spatial 
Attributes (Drainage Area & Channel Dimensions) 
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When Does Bankfull Occur? 

(http://www.michigan.gov/som/0,4669,7-192-45414-385043--,00.html) 



When Does Bankfull Occur? 

(http://www.michigan.gov/som/0,4669,7-192-45414-385043--,00.html) 

Site ID: 50063800 

Bankfull: 61.50 m³/sec 

Range Within 10% of Bankfull Discharge: 55.35-67.65 m³/sec 

Date Mean Daily Discharge (m³/sec) Date Mean Daily Discharge (m³/sec) 

9/19/1998 2.75 11/10/2003 3.68 
9/20/1998 1.98 11/11/2003 9.54 
9/21/1998 67.39 11/12/2003 64.56 
9/22/1998 47.57 11/13/2003 22.71 
9/23/1998 4.28 11/14/2003 5.15 
9/24/1998 2.27 11/15/2003 3.40 

Climate:  

Tropical Rainforest (Af) 



When Does Bankfull Occur? 

(http://www.michigan.gov/som/0,4669,7-192-45414-385043--,00.html) 

Site ID: 26017040 

Bankfull: 9.46 m³/sec 

Range Within 10% of Bankfull Discharge: 8.51-10.41 m³/sec 

Date Mean Daily Discharge (m³/sec) Date Mean Daily Discharge (m³/sec) 

11/12/2004 3.07 12/18/2013 2.128 
11/13/2004 28.3 12/19/2013 2.057 
11/14/2004 10.62 12/20/2013 1.845 
11/15/2004 8.51 12/21/2013 27.05 
11/16/2004 23.37 12/22/2013 12.2 
11/17/2004 10.32 12/23/2013 12.93 
11/18/2004 9.56 12/24/2013 11.96 
11/19/2004 9.56 12/25/2013 11.72 
11/20/2004 5.79 12/26/2013 7.844 
11/21/2004 4.53 12/27/2013 6.438 
11/22/2004 3.84 12/28/2013 5.188 

Climate:  

Tropical Monsoonal (Am) 



When Does Bankfull Occur? 

(http://www.michigan.gov/som/0,4669,7-192-45414-385043--,00.html) 

Site ID: 09432000 

Bankfull: 49.21 m³/sec 

Range Within 10% of Bankfull Discharge: 44.29-54.1 m³/sec 

Date Mean Daily Discharge (m³/sec) Date Mean Daily Discharge (m³/sec) 

8/18/1996 6.06 9/14/2013 40.78 
8/19/1996 6.06 9/15/2013 122.61 
8/20/1996 10.76 9/16/2013 317.15 
8/21/1996 317.15 9/17/2013 190.86 
8/22/1996 32.56 9/18/2013 134.50 
8/23/1996 20.22 9/19/2013 70.79 
8/24/1996 17.70 9/20/2013 52.39 
8/25/1996 62.58 9/21/2013 46.44 
8/26/1996 17.84 9/22/2013 43.89 
8/27/1996 14.02 9/23/2013 38.51 
8/28/1996 15.43 9/24/2013 32.85 

Climate:  

Semi-Arid Cold (BSk) 



When Does Bankfull Occur? 

(http://www.michigan.gov/som/0,4669,7-192-45414-385043--,00.html) 

Site ID: 02105900 

Bankfull:  2.76 m³/sec 

Range Within 10% of Bankfull Discharge: 2.48- 3.04 m³/sec 

Date Mean Daily Discharge (m³/sec) Date Mean Daily Discharge (m³/sec) 

10/20/1971 0.96 8/30/2006 0.15 
10/21/1971 0.96 8/31/2006 7.76 
10/22/1971 2.07 9/1/2006 58.05 
10/23/1971 10.39 9/2/2006 21.86 
10/24/1971 7.48 9/3/2006 8.61 
10/25/1971 6.20 9/4/2006 4.76 
10/26/1971 5.58 9/5/2006 2.97 
10/27/1971 3.88 9/6/2006 4.96 
10/28/1971 2.89 9/7/2006 4.56 
10/29/1971 2.24 9/8/2006 2.46 
10/30/1971 1.76 9/9/2006 1.47 
10/31/1971 1.44 9/10/2006 0.96 

11/1/1971 1.25 9/11/2006 0.67 

Climate:  

Temperate Without dry  

season Hot Summer (Cfa) 



When Does Bankfull Occur? 

(http://www.michigan.gov/som/0,4669,7-192-45414-385043--,00.html) 

Site ID: 01AD003 

Bankfull:  243.00 m³/sec 

Range Within 10% of Bankfull Discharge: 218.70- 267.30 m³/sec 

Date Mean Daily Discharge (m³/sec) 

4/23/2009 105.00 
4/24/2009 157.00 
4/25/2009 215.00 
4/26/2009 260.00 
4/27/2009 295.00 
4/28/2009 288.00 
4/29/2009 253.00 
4/30/2009 223.00 
5/1/2009 192.00 

Climate: Cold  

Without dry season  

Warm Summer (Dfb) 



 

 
Presenter’s notes: Average annual days at bankfull flow (tbd) is not significantly impacted by any tested spatial attribute but is significantly impacted by climate. 
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Presenter’s notes: Proportion of water discharged during bankfull is not significantly impacted by any tested spatial attribute. 
Seasonality of precipitation significantly impact the proportion of water discharged during bankfull flow. 
To estimate the most accurate average proportion of water discharged during bankfull specific Köppen climate for the stream’s drainage area is required.  



 
 

Presenter’s notes: Proportion of water discharged during bankfull is not significantly impacted by any tested spatial attribute. 
Seasonality of precipitation significantly impact the proportion of water discharged during bankfull flow. 
To estimate the most accurate average proportion of water discharged during bankfull specific Köppen climate for the stream’s drainage area is required. 



References 
▪ Allen, Philip A., et al. "The Qs problem: sediment volumetric balance of proximal foreland basin systems." Sedimentology 60.1 (2013): 102-130. 

▪ Andrews, E.D., 1980, Effective and bankfull discharges of streams in the Yampa River basin, Colorado and Wyoming: Journal of Hydrology, v. 46, p. 311–
330. 

▪ Blum, M., Martin, J., Milliken, K., and Garvin, M., 2013, Paleovalley systems: insights from Quaternary analogs and experiments: Earth-Science Reviews, v. 
116, p. 128–169. 

▪ Davidson, S.K., and North, C.P., 2009, Geomorphological regional curves for prediction of drainage area and screening modern analogues for rivers in the 
rock record: Journal of Sedimentary Research, v. 79, p. 773–792. 

▪ Farquharson, F.A.K., Meigh, J.R., and Sutcliffe, J.V., 1992, Regional flood frequency analysis in arid and semi-arid areas: Journal of Hydrology, v. 138, p. 
487–501. 

▪ Helland-Hansen, William, et al. "Deciphering Earth's Natural Hourglasses: Perspectives On Source-To-Sink Analysis." Journal of Sedimentary 
Research 86.9 (2016): 1008-1033. 

▪ Holbrook, John, and Hamdalla Wanas. "A fulcrum approach to assessing source-to-sink mass balance using channel paleohydrologic paramaters 
derivable from common fluvial data sets with an example from the Cretaceous of Egypt." Journal of Sedimentary Research 84.5 (2014): 349-372. 

▪ Nixon, M., LACEY, and INGLIS, 1959, A study of the bank-full discharges of rivers in England and Wales.: Proceedings of the Institution of Civil Engineers, 
v. 12, p. 157–174. 

▪ Latrubesse, E.M., Stevaux, J.C., and Sinha, R., 2005, Tropical rivers: Geomorphology, v. 70, p. 187–206. 

 



References 
▪ Lawlor, S.M., 2004, Determination of channel-morphology characteristics, bankfull discharge, and various design-peak discharges in western Montana. 

▪ Lin, X., 1999, Flash floods in arid and semi-arid zones, in Technical documents in hydrology, UNESCO. 

▪ Peel, Murray C., Brian L. Finlayson, and Thomas A. McMahon. "Updated world map of the Köppen-Geiger climate classification." Hydrology and earth 
system sciences discussions 4.2 (2007): 439-473. 

▪ Pike, A.S., and Scatena, F.N., 2010, Riparian indicators of flow frequency in a tropical montane stream network: Journal of hydrology, v. 382, p. 72–87. 

▪ Plink-Björklund, P., 2015, Morphodynamics of rivers strongly affected by monsoon precipitation: review of depositional style and forcing factors: 
Sedimentary Geology, v. 323, p. 110–147. 

▪ Powell, G.E., Mecklenburg, D., and Ward, A., 2006, Evaluating channel-forming discharges: a study of large rivers in Ohio: Transactions of the ASABE, v. 
49, p. 35–46. 

▪ Ramirez, Kelly M., et al. "Integrating Geology, Hydraulic Fracturing Modeling, and Reservoir Simulation in the Evaluation of Complex Fluvial Tight Gas 
Reservoirs." SPE/EAGE European Unconventional Resources Conference & Exhibition-From Potential to Production. 2012. 

▪ Schellekens, J., Scatena, F.N., Bruijnzeel, L.A., and Wickel, A.J., 1999, Modelling rainfall interception by a lowland tropical rain forest in northeastern 
Puerto Rico: Journal of Hydrology, v. 225, p. 168–184. 

▪ Sømme, Tor O., et al. "Relationships between morphological and sedimentological parameters in source‐to‐sink systems: A basis for predicting 
semi‐quantitative characteristics in subsurface systems." Basin Research 21.4 (2009): 361-387. 

▪  Whittaker, Alexander C., et al. "Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment 
supply." Geological Society of America Bulletin 123.7-8 (2011): 1363-1382. 

 



Questions? 

(http://vogeltalksrving.com/2015/09/shenandoah-river-state-park-the-mountains-are-calling/) 
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