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Abstract 

Fluvial meander bends undertake expansion, translation, rotation and combinations thereof as they evolve. However, relationships between the 

migratory behavior of a river, the geometry of accumulated sedimentary bodies (e.g., point bars, counter-point bars) that arise from channel 

migration, and the resultant internal lithofacies distribution within these bodies remain relatively poorly understood. To explore the relationship 

between fluvial channel evolution and resultant accumulated stratigraphic architecture, a forward numerical stratigraphic model – the Point-Bar 

Sedimentary Architecture Numerical Deduction (PB-SAND) – has been developed that uses a combined geometric-stochastic approach. The 

model is applied to predict types of lithological heterogeneity and sandbody connectivity in fluvial successions for a variety of meandering 

river types. 

The modeling approach is constrained by quantified sedimentological data from real-world case-study examples stored in a relational database, 

the Fluvial Architecture Knowledge Transfer System (FAKTS). The model has the following capabilities: 1) to replicate bar-growth trajectories 

and sedimentary structures of meandering systems based on real-world data of sedimentary architecture derived from modern rivers and ancient 

successions that serve as geologic analogs; 2) to examine the sensitivity of intrinsic system behavior to different allogenic controls operating at 

varying spatial and temporal scales, such as point-bar elements in humid coastal plain vs. dryland fluvial fan settings; 3) to quantify the 

heterogeneity and compartmentalization arising from intra-bar mud drapes; 4) to predict the sedimentary architecture of meander belts arising 

from repeated migration and avulsion of river reaches; 5) to predict fluvial sandbody stacking patterns, for example in response to coeval rift 

basin development. 

The grid-free, 3D model provides linkage between local outcrop measurements and large-scale evolutionary behavior, and allows quantitative 

assessments of possible scenarios depicted in traditional qualitative facies models. Output from PB-SAND can be employed to condition 

reservoir models at different spatial scales, notably by creating training images for constraining models built through techniques based on 

Multi-Point Statistics. More realistic architectural geometries and spatial distributions of facies associations markedly enhance conventional 

reservoir models, thereby improving fluid-flow simulations. 
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Applications of PB-SAND 
PB-SAND is a numerical model for the fOlWard modelling of the development of stratigraphic architectures and internal lithofacies distributions 
associated with fluvial point-bar elements, and similar elements present in fiuvial and tidally infiuenced fiuvial systems (Yan et aI. , 2017). PB-SAND is 
coded in Matlab with a user interface programmed in C#. It is designed as a tool for sedimentary research and finds specific application in aiding the 
development of improved reservoir modelling workflows, whereby PB-SAND can be used to generate training images for use in MPS modelling 
workfiows, and numerical output can be used in object-based modelling workflows using industry standard software such as Schlumberger Petrel. The 
model can be applied to reconstruct the complex spatio-temporal evolution of a variety of meandering river behaviours and to understand potential 
evolutionary trajectories and sedimentary structures of both ancient and modern fiuvial meandering systems. The model (i) serves as a useful tool to 
improve our understanding of the origin of stratigraphic complexity and heterogeneity in fiuvial depositional systems at a variety of different spatial scales , 
and (ii) is directly applicable to subsurface hydrocarbon reservoir and groundwater aquifer appraisal. 

Predict Fluvial Point-bar Architecture and Facies He~geneity 
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vs 
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Fig. 6. Examples of fiuvial point
bar elements in humid coastal
plain systems . (A) Point-bar 
elements in the Upper Arang 
Fonnation , Middle Miocene, West 
Natuna Basin , off-shore 
Indonesia , imaged in high
resolution 3D seismic data 
(adapted from Maynard & Murray, 
2003). (B) Point-bar elements in 
the Tertiary Patlani rift basin, Gulf 
of Thailand , imaged in high
resolution 3D seismic data 
(adapted from Reijenstein et aI. , 
2011). (C) An ancient point-bar 
element in the Ferron Sandstone 
of Cretaceous Notom Delta , Utah, 
USA; note the channel migration 
directions indicated on the 
satellite image (adapted from Wu 
et aI. , 2015). (D) Point bar 
elements in the Jurassic Scalby 
Formation , UK ; note the 
interpretations of different parts of 
point-bar elements (adapted from 
Ghinassi & lelpi , 2015) . 

Fig. 7. Examples of fiuvial point
bar elements in interpreted 
dryland fiuvial-fan systems. (A) 
Meander-bend scroll bars in the 
Upper Triassic Chinle Formation 
at Petrified Forest National Park, 
Arizona, USA (adapted from 
Trendell et aI. , 2013) . (B) 
Reiersvlei meanders (32 0 02' S, 
22 0 03' E) in the Permian Beaufort 
Group of the Southwestern 
Karoo, South Africa (image from 
Google Earth; cf. Smith , 1987). 
(C) Point-bar elements (38 0 24' N, 
111 0 01' W) in the Upper Jurassic 
Morrison Formation, Utah, USA 
(image from Google Earth ; cf. 
Hartley et aI. , 2015). (D) Point-bar 
elements (39 0 10' N, 110 0 52' W) 
in the Upper Jurassic Morrison 
Formation, Utah, USA (image 
from Google Earth; cf. Hartley et 
aI., 2015) . (E) Outcrop of a point
bar sandstone body with well
preserved clay plug and lateral
accretion surfaces from the 
Miocene Huesca fiuvial fan , Ebro 
Basin , Spain (adapted from 
Donselaar & Overeem, 2008) . 
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Fig. 8. Modelling morphology evolution of point bars. (A) Blue, 
green, and pink circles represent input coordinates of channel 
trajectories at t" t" and t3 respectively, which are digitised from the 
seismic image in the Upper Arange Formation of Middle Miocene, 
West Natuna Basin , off-shore Indonesia (Maynard and Murray, 
2003). (B) Morphology of point bars modelled by PB-SAND with 
highlighted channel trajectories at t" t" and t3' 
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Fig. 9. Input parameters from real-world case examples extracted 
from FAKTS database (Colombera et aI. , 2013) . (A) and (B) show 
the distribution of mud-drape thickness in humid coastal plain and 
dryland fan systems. (C) and (D) show the proportions of mud, 
sand, and gravel facies in point-bar elements of humid coastal plain 
and dryland fan systems, respectively. See details in Yan et al. 
(2018). 
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Predict Fluvial Point-bar Architecture and Facies Heterogeneity .-
(A) 

Fig. 10. Examples of the length, the lateral spacing, and the width (the 
projected extent in horizontal surface) of mud drapes shown in a 3D 
modelling output of a modelled point bar generated using PB-SAND. 
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Fig. 11 . Three-dimensional fence diagrams of representative simulations 
in (A) humid coastal-plain systems and (B) dryland fiuvial-fan systems. 
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Fig. 12. Statistical outputs from modelled point-bar elements. 
Lithological facies proportions from PB-SAND modelling outputs in 
(A) humid coastal-plain systems vs. (B) dryland fiuvial-fan systems; 
which are closely comparable to their counterparts in the input data 
(Fig. 9). (C) The vertical thickness of mud drapes sampled from 
simulation outputs. (D) Tortuosity of connected sand geo-bodies. A 
single connected deposit is recognised in the meander belt modelled 
using the humid coastal-plain analogues (HCP Bell), whereas three 
isolated point-bar elements (DlF PB1 , DlF PB2, and DlF PB3) are 
modelled using the dryland fluvial-fan analogues. 
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Fig. 13. Changes of the connectivity functions of sand along x (across 
channel belt) direction in simulations. 

Applications of PB-SAND 
PB-SAND is a numerical model for the fOlWard modelling of the development of stratigraphic architectures and internal lithofacies distributions 
associated with fluvial point-bar elements, and similar elements present in fiuvial and tidally infiuenced fiuvial systems (Yan et aI. , 2017). PB-SAND is 
coded in Matlab with a user interface programmed in C#. It is designed as a tool for sedimentary research and finds specific application in aiding the 
development of improved reservoir modelling workflows, whereby PB-SAND can be used to generate training images for use in MPS modelling 
workfiows, and numerical output can be used in object-based modelling workflows using industry standard software such as Schlumberger Petrel. The 
model can be applied to reconstruct the complex spatio-temporal evolution of a variety of meandering river behaviours and to understand potential 
evolutionary trajectories and sedimentary structures of both ancient and modern fiuvial meandering systems. The model (i) serves as a useful tool to 
improve our understanding of the origin of stratigraphic complexity and heterogeneity in fiuvial depositional systems at a variety of different spatial scales , 
and (ii) is directly applicable to subsurface hydrocarbon reservoir and groundwater aquifer appraisal. 

Predict Fluvial Point-bar Architecture and Facies He~geneity 

Humid coastal-plain systems 

vs 

Oryland fluvial-fan systems 

Fig. 6. Examples of fiuvial point
bar elements in humid coastal
plain systems . (A) Point-bar 
elements in the Upper Arang 
Fonnation , Middle Miocene, West 
Natuna Basin , off-shore 
Indonesia , imaged in high
resolution 3D seismic data 
(adapted from Maynard & Murray, 
2003). (B) Point-bar elements in 
the Tertiary Patlani rift basin, Gulf 
of Thailand , imaged in high
resolution 3D seismic data 
(adapted from Reijenstein et aI. , 
2011). (C) An ancient point-bar 
element in the Ferron Sandstone 
of Cretaceous Notom Delta , Utah, 
USA; note the channel migration 
directions indicated on the 
satellite image (adapted from Wu 
et aI. , 2015). (D) Point bar 
elements in the Jurassic Scalby 
Formation , UK ; note the 
interpretations of different parts of 
point-bar elements (adapted from 
Ghinassi & lelpi , 2015) . 

Fig. 7. Examples of fiuvial point
bar elements in interpreted 
dryland fiuvial-fan systems. (A) 
Meander-bend scroll bars in the 
Upper Triassic Chinle Formation 
at Petrified Forest National Park, 
Arizona, USA (adapted from 
Trendell et aI. , 2013) . (B) 
Reiersvlei meanders (32 0 02' S, 
22 0 03' E) in the Permian Beaufort 
Group of the Southwestern 
Karoo, South Africa (image from 
Google Earth; cf. Smith , 1987). 
(C) Point-bar elements (38 0 24' N, 
111 0 01' W) in the Upper Jurassic 
Morrison Formation, Utah, USA 
(image from Google Earth ; cf. 
Hartley et aI. , 2015). (D) Point-bar 
elements (39 0 10' N, 110 0 52' W) 
in the Upper Jurassic Morrison 
Formation, Utah, USA (image 
from Google Earth; cf. Hartley et 
aI., 2015) . (E) Outcrop of a point
bar sandstone body with well
preserved clay plug and lateral
accretion surfaces from the 
Miocene Huesca fiuvial fan , Ebro 
Basin , Spain (adapted from 
Donselaar & Overeem, 2008) . 
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Fig. 8. Modelling morphology evolution of point bars. (A) Blue, 
green, and pink circles represent input coordinates of channel 
trajectories at t" t" and t3 respectively, which are digitised from the 
seismic image in the Upper Arange Formation of Middle Miocene, 
West Natuna Basin , off-shore Indonesia (Maynard and Murray, 
2003). (B) Morphology of point bars modelled by PB-SAND with 
highlighted channel trajectories at t" t" and t3' 
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Fig. 9. Input parameters from real-world case examples extracted 
from FAKTS database (Colombera et aI. , 2013) . (A) and (B) show 
the distribution of mud-drape thickness in humid coastal plain and 
dryland fan systems. (C) and (D) show the proportions of mud, 
sand, and gravel facies in point-bar elements of humid coastal plain 
and dryland fan systems, respectively. See details in Yan et al. 
(2018). 
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Predict Fluvial Point-bar Architecture and Facies Heterogeneity .-
(A) 

Fig. 10. Examples of the length, the lateral spacing, and the width (the 
projected extent in horizontal surface) of mud drapes shown in a 3D 
modelling output of a modelled point bar generated using PB-SAND. 
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Fig. 11 . Three-dimensional fence diagrams of representative simulations 
in (A) humid coastal-plain systems and (B) dryland fiuvial-fan systems. 
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Fig. 12. Statistical outputs from modelled point-bar elements. 
Lithological facies proportions from PB-SAND modelling outputs in 
(A) humid coastal-plain systems vs. (B) dryland fiuvial-fan systems; 
which are closely comparable to their counterparts in the input data 
(Fig. 9). (C) The vertical thickness of mud drapes sampled from 
simulation outputs. (D) Tortuosity of connected sand geo-bodies. A 
single connected deposit is recognised in the meander belt modelled 
using the humid coastal-plain analogues (HCP Bell), whereas three 
isolated point-bar elements (DlF PB1 , DlF PB2, and DlF PB3) are 
modelled using the dryland fluvial-fan analogues. 
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Fig. 13. Changes of the connectivity functions of sand along x (across 
channel belt) direction in simulations. 
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Fig. 14. (A) Seismic time slice through the meander-belt deposits. (B) Facies logs from eight of the wells drilled in the northern point-bar body; only 
the interval interpreted as point-bar deposits is represented. (C) Flow chart of workflows for the creation of static models for large point-bar 
reservoirs using PB-SAND; boxes represent inputs (blue), operations (purple), and outputs (green). Dashed lines indicate additional routes by 
which some observations could be used to constrain modeling operations. See details in Colombera et al. (2018). 
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Fig. 15. Plan views of 
three scenarios of plan 
form evolution 
modelled for the central 
point-bar body, 
respectively assuming 
simple meander 
expansion (A), 
expansion and rotation 
(B) , and translation 
followed by expansion 
(C). Coloured lines 
represent point-bar 
accretion surfaces 
obtained by 
interpolation of channel 
trajectories at 
significant times. Black 
lines represent the 
margins of the 
genetically related 
channel fill associated 
with the youngest 
channel trajectory used 
to condition the models . 
The three channel 
centre-line used to 
condition the planform 
models are 
represented by: a blue 
curve (time 1), a yellow 
curve (time 2), and the 
centre line of the 
channel fill (time 3) . 
Two stages of 
evolution , each 
including three time 
steps, were modelled 
for the scenario in part 
C. 
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Fig. 16. Geocellular models (upscaled grids) for the central point-bar body built 
using PB-SAND. Fence diagrams of the grids are shown on the left-hand side, 
coded by facies type. Shaded 3D views of the modeled mud drapes in each 
simulation are shown on the right-hand side. 
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Fig. 17. Comparison between the two models for the northern 
point bar created combining PB-SAND with SIS (red), and two 
corresponding SIS models that were not conditioned on regions 
generated with PB-SAND (blue). The models that incorporate 
accretion geometries generated using PB-SAN 0 are 
characterised by significant difference in connectivity functions, 
highlighting the importance of accounting for styles of meander 
growth when modelling facies distributions. 
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