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Abstract 

Gravity flows play an important role in distributing clastic sediments into lacustrine basins at the front of fluvial-deltaic systems due to the 
tendency of sediment-laden rivers to plunge along the bottoms of lower-density lake waters. Fluvial derived underflows can be relatively long 
lived, perhaps on the scale of weeks, and distribute substantial volumes of sand far into the profundal zone of lacustrine systems that are 
otherwise characterized by chemical sediments and clay and silt sized clastics. This paper examines the properties of these sandy hyperpycnites 
in the Eocene Lake Uinta (Green River Formation) of the Uinta Basin in Northeastern Utah using outcrop, core, and wellbore data. These 
deposits are of particular interest due to the developing tight oil play which exploits them using horizontal wellbores. Facies typical of gravity 
flows display recurring sedimentary structures that represent different flow conditions. A typical bed consists of well sorted, fine and very fine 
grained sandstone with a flat base that may include clay chips (rip-ups) within massive or low angle cross beds, with planar beds often 
overlying them. These are overlain by thick beds of climbing ripples with individual ripple trains reaching over two feet in thickness. Climbing 
ripples are a consistent characteristic of these deposits, occurring even when other sedimentary structures typical of these beds are absent. In 
proximal areas supercritical climbing ripples can comprise the bulk of the deposit, with subcritical climbing ripples being more common in 
distal portions of the flow. Thin planar sands and interbedded silts and claystone top out the deposit, with the entire gravity flow ranging from 
less than a foot to over 15 feet in thickness. Soft-sediment deformation is common, particularly in the basal portions of the deposit, with 
typically including ball and pillow, flame structures, and convolute bedding. Hyperpicnal sandstone lobes of up to a mile in width and several 
miles in length have been mapped using well data. Individual lobes branch off larger feeder channels, forming larger fans and fan complexes. 
These extensive, well sorted sandstone complexes are unlikely to originate in surge-like gravity flows, instead probably represent seasonal 
sediment-laden fluvial underflows. 
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Summary

 Hyperpycnites
– Long-lived fluvial linked turbidity 

currents
– Conditions necessary for a fluvial 

current to plunge in ancient Lake 
Uinta

– Non-plunging systems

 Upper Castle Peak Interval
– Location within the Green River 

Formation
– Descriptions of the interval
– Geometries of hyperpycnal flows

 Creation of the Castle Peak Shelf
– Sediment partition
– Duchesne Fault Zone

 Depositional Model
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Highly Seasonal Fluvial Systems

 Castle Peak deposition
– Early in the Early Eocene 

Climatic Optimum (EEOC)

– Semi-arid, seasonal 
fluvial systems 
(monsoonal?)

 Large floods 
– Relatively rare (~decadal) 

– Could move immense 
amounts of sediments

 Ideal system to create 
large, relatively long-lived 
hyperpycnal flows

Castle 
Peak

– Largest channels, 10’s of m erosion at bases = very high water discharge
– Thickest accretion sets (up to 20 m) = very high sand supply, very high 

deposition rates
– Bioturbation & paleosol formation common on accretion set boundaries = 

very episodic with long periods of non-deposition = long dry periods with 
intense wet periods

Plink-Bjorklund et al., 2010

Modified from Gall et al., 2017

Castle Peak Equivalent



Hyperpycnal Flows
 Hyperpycnal flows occur when sediment-laden rivers enter 

standing, lower-density water 
– In this case, ancient Lake Uinta

 Not all sediment laden rivers become hyperpycnal flows on 
encountering a standing body of water:
– Sufficient density contrast with the surrounding lake water
– Sufficient lake depth 

– Suitable discharge rate

 Because of their excess density, the flows plunge near the 
river mouth and continue to travel basin-ward as a 
turbulent underflow

Mulder et al., 2003 Mulder et al., 2003

Boggs, 1995

Modern examples 
of rivers plunging 
to form 
hyperpycnal flows
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Conditions for Hyperpycnal Flow

 Larger discharges will push plunge points 
into deeper water

 Higher sediment concentrations will plunge 
at shallower depths and are characterized 
by faster underflows

– Fluvial characteristics at Lake Uinta are 
unclear, but even very high sediment 
concentrations would need tens of feet of 
lake depth to plunge into a hyperpycnal flow

– The lake bottom can be shown to be very flat 
and relatively shallow

0.5
U/h

Modified from Lee and Yu, 1997

Froude number

U/h Velocity averaged 
over lake depth

Density of current in 
excess of lake water

Gravity 
acceleration

Density of 
lake water

Lake depth

Fluvial discharges will continue to prograde into the 
lake until they dissipate or reach a Froude number 
≥0.5 and collapse as a turbidity current

Lamb and Mohrig, 2009
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 The Duchesne Fault Zone acted as a point 

of structural rotation, marking the 
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 The change of structural dip focused 
deltaic sediments

A A’

Isopach of sandstones in Lower Green River

20 M
iles

N

A

A’

Change of Slope

CI = 20 ft



Sandstones in a Carbonate World

 In the central portion of the 
Uinta Basin, carbonates 
dominate the Lower Green 
River and Upper Wasatch

 Within the Upper Castle Peak 
is a 75 ft thick package of very 
fine to fine grained 
sandstones interbedded with 
silt and mudstones

 Proved to produce oil

 Labeled here as the Upper 
Castle Peak
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Lacustrine Depositional Models

 Gilbert-style deltas forming on the 
shallow shelf proximal to the hinge line 
at the Duchesne Fault Zone

 Deep lacustrine environment clear of 
clastics and depositing carbonates

 Sediment reaches the hinge line at the 
Duchesne Fault Zone and travels as 
hyperpycnites to the basin floor

 Carbonates are no longer deposited as 
clastics cloud the water
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Upper Castle Peak Marginal Lacustrine Siliciclastics
 Upper flow regime beds in 

distributary channel sandstones

 Finer grained floodplain 
deposits with root traces, coals, 
paleosols and shales containing 
oysters

Crevasse splay 
deposits with 

root traces
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. 
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Progradation in Non-Plunging Systems

 Fluvial systems that don’t develop the 
conditions necessary to plunge, likely 
due to shallow lake levels, prograde 
rapidly, depositing mouth bars and 
terminal distributary channels

 Sediments were trapped near the 
deltaic systems, allowing clear-water 
carbonate systems to develop in the 
lake center

Boggs, 1995
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Upper Castle Peak Deep Lacustrine Siliciclastics
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Fluvial Charged Hyperpycnal Flows

 Long lived, fluvial-linked turbidity 
currents will experience changing 
flow regimes over time, which 
could lead to a single flow 
experiencing multiple  bedding 
types

 Hyperpycnal flows in lacustrine 
systems undergo three phases 
(Zavala 2006) 
1. Acceleration

2. Erosion-plus-bypass

3. Deceleration 

 These phases are linked to fluvial 
discharge and will vary accordingly

Zavala et al., 2006

Acceleration Erosion/Bypass Deceleration
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Upper Castle Peak Deep Lacustrine Siliciclastics
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Relief on the Castle Peak Shelf

150’ of modern 
stratigraphic relief

 Compaction rates vary by lithology and depth of 
burial, but if we assume an averaged 40% reduction 
in interval thickness, ancient relief on the Castle 
Peak shelf would have been ~210’
– For the slope, that would be about ~0.7°, which is significantly 

steeper than lacustrine hyperpycnites from other basins
 No significant erosion on the shelf margin
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Hyperpycnal or Fluvial?

 We suggest a hyperpycnal origin based on the following 
observations
– Cores on the shelf commonly contain coals, paleosols and roots, with 

minor shales containing oysters
– Cores off the shelf these are replaced with laminated shales with nerites 

and planolites with an absence of oysters or other terrestrial indicators
– The bulk of the individual sand beds fine upward through a classic  

Bouma-like sequence, in bioturbated to laminated shales
– No incision on the shelf margin has been observed, as might be expected 

from the base-level fall that would be necessary (~210’) for fluvial 
systems to be deposited

– The geometry of 
 distributary channels 
 identifiable delta 
 sands that fall on a slope with thinner, tabular shapes
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Castle Peak Deposition
A A’DFZ

19 Miles

 Clastics disperse dacross the basin floor 
through hyperpycnal flows

 The carbonate factory is shut off as clastics
cloud the water column

 Clastic sediments are trapped on the flat 
Uteland Butte surface

 Hyperpycnites into the deeper basin do not 
develop

 A carbonate factory develops in the clear 
water in the center of the basin

 Clastic input progrades further north
 Weaker carbonate system with more clay 

input
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Conclusions

 Fluvial systems that discharge into portions of the lake without sufficient depth to develop a plunge zone prograde rapidly 
through mouth bar and terminal distributary channel deposits  

– Clastic sediments are largely trapped nearshore

– Lake water column is clear in basin center, allowing carbonates to accumulate into thick limestone beds

 Clastic wedge builds out to Duchesne Fault Zone, which acts as a hinge line for a change in slope break

 The clastic shelf, coupled with relief created by the Duchesne Fault Zone, creates sufficient water depth near the mouths of 
prograding deltas to develop a plunge zone with coupled turbidity currents during seasonal floods

 Hyperpycnal flows flush siliciclastic sediments far into the basin, slowing deltaic progradation and allowing a stable shoreline to 
develop
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