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Abstract 

 

The Monterey Formation is well known as a heterogeneous fine-grained rock of significant economic interest. Its role as a reservoir, source 

rock, and seal has been documented in many studies. Much less work has been done, however, trying to understand and use individual 

lithofacies and lithofacies associations for the purpose of stratigraphic evaluation, and ultimately predicting lithofacies distributions.  

 

Casual workers often assume a relatively simplistic process of pelagic settling of biogenic material as the primary depositional process. The 

Monterey, however, contains a significant component of fine-grained terrigenous clastics. Mud and mudstone studies over the past few decades 

revealed a range of transport processes, from hypo- and hyperpycnal flows to dilute gravity flows, that distribute fine-grained sediments far into 

the basin. Both the fine-grained clastics and biogenic components are stripped from the water column and delivered to the seafloor by 

flocculation, organic aggregation, and biogenic pelleting. Muds on the sea floor are subject to reworking by a variety of bottom currents. The 

Monterey contains evidence of all these processes.  

 

After deposition, diagenesis takes over within the first meter of burial. Diagenetic reactions are a function of sediment composition as well as 

rate of burial and pore water chemistry. Precipitation from pore waters can account for greater than 50 percent of the rock volume for some 

bedsets. 

 

The resultant lithofacies and lithofacies associations are diagnostic of depositional environment. The lithofacies associations, including stratal 

stacking patterns, change laterally moving from one basinal environment to another. We can improve our predictions of source, reservoir, and 

seal by looking more closely at basic rock data and using proxies such as well logs and seismic data to map lithofacies distributions relative to 

specific depositional environments. 
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Pelagic Rain? 

Maybe more complicated? ~ 
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Scours and Graded Beds 



Scours and onlap, nodules 



Diagenesis and compaction obscure depositional fabric 



The Road Map 

• Depositional Processes 

– Organic and Inorganic Components 

– Distribution Mechanisms, Patterns 

• Diagenesis  

– Burial and Silica Phase Changes Obscure Dep’l Fabric 

– Early-formed Cements (Phosphate, Dolomite) Provide Clues About Dep’l 

Processes 

• Stratigraphic Applications (Correlation) 

• Map Patterns Related to Depositional Environment 

 

 



From Alldredge, 2001 (modified 

from Hurd & Spencer, 1999) 

• Primary particles can be transformed 
biologically into fecal pellets, molts, 
and mucus feeding webs through the 
feeding activities of zooplankton 
 

• Particles collide with each other and 
stick together to form progressively 
larger aggregates through the 
physical process of coagulation 

Most nonliving organic matter traveling 
from  the surface to the deep sea sinks 
not as individual particles, but in the form 
of large fecal pellets & large aggregates of 
organic detritus 

(Slide modified from M. Keller, pers. comm.) 

Fine-grained sediment gets to the 

seafloor through a series of 

complex mechanisms 
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Inserts from Alldredge, 2001 

1 cm  

5 mm  

Marine Snow example, GOM 
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Inorganic Particles Are Typically Transported by Hypo and Hyperpycnal Plumes 

From Many et al., 2018 

Rhone River Discharge 

Lofting from 
Buoyancy 
Reversal of 
Turbidites 

• Plumes can persist for 100’s of kms from sediment source 
 

• Aeolian contributions can also be important locally 

(From Steel et al., 2017) 



From Alldredge, 2001 (modified 

from Hurd & Spencer, 1999) 

• Primary particles can be transformed 
biologically into fecal pellets, molts, 
and mucus feeding webs through the 
feeding activities of zooplankton 
 

• Particles collide with each other and 
stick together to form progressively 
larger aggregates through the 
physical process of coagulation 

Most nonliving organic matter traveling 
from  the surface to the deep sea sinks 
not as individual particles, but in the form 
of large fecal pellets & large aggregates of 
organic detritus 

(Slide modified from M. Keller, pers. comm.)             Intermediate and bottom currents 

Fine-grained sediment gets to the 

seafloor through a series of 

complex mechanisms 



From Gardner et al., 2017 

Western North Atlantic Benthic Nepheloid Layer PM Distribution 

• General Downslope Increase in 
Concentration 
 

• Implication:  highest depositional 
rates in the center of small basins 
and sub-basins like the Miocene 
California margin 



Burial and Silica Diagenesis 

• Burial compaction and silica phase 
transitions obscure initial depositional 
fabric and geometry.   
 

• Diatomite outcrops are least impacted, 
and serve as good analogs for altered 
sediments.   
 

• Chang, Grimm, White and others 
worked with diatomite samples to 
document initial lamina composition 
and depositional textures. 

 
 

X-radiograph of diatomite slab from Chang, Grimm, and White, 1998 

Diatomite Outcrop 



Thin Sections of Opal CT and Quartz Phase Monterey Lithofacies 

Opal CT Porcelanite (<20% clay) 
Organic aggregates, moldic porosity 

Opal CT Siliceous Mudstone (>40% clay) 
Pellets, clay-rich matrix  

Quartz Porcelanite 

Quartz Siliceous Mudstone  
Pellets, clay-rich matrix, silt  

(long dimension of images 7 mm) 

Silt Lamination 

Quartz Siliceous Mudstone, silt, organics  



Early Cement/Nodules Provide Clues to Depositional 
Conditions 

Development of  

Cement/Nodules  

 Sedimentation Rate 

SystematicVariations in:  

» Rel. Volume 

» Morphology 

» Lateral distribution 

Generally Phosphate and Dolomite in the Monterey Formation 
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Development of Early 
Cement/Nodules 

Development of Cement/Nodules 

 Sedimentation Rate 
(+ Oxidant/Reductant Supply: 

Organic matter, sediment components,  

pore water chemistry) 

Systematic 

Variations in:  

» Rel. Volume 

» Morphology 

» Lateral 

distribution 
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Phosphatic Mudstone at Shell Beach 



Phosphatic Mudstone at Shell Beach 
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Stratal Stacking of Dolomite 
at Shell Beach 

Argillaceous 

Siliceous Dolomitic 

Porcelanite 
Dolomite 

Chert 

Detritus 

Biogenic Silica Carbonate 

Mudstone 

Mudstone 



Early-formed dolomite resists 
compaction so better preserves 
original lamina geometry and fabric 



Monterey Isopach Map  

Gas Fields 
 
Oil Fields 
 
Contour Interval 200’ 

Naples Beach Molino #8 

HE-1 

Line of Section 

(map from Tom Redin, PSAAPG map series) 

3 miles 

N 

Stratigraphic Correlation:  Santa Barbara Channel 



Upper Slope  
(Naples Beach 
outcrop) 

Lower Slope/Basin  
(He-1 well) 

Lower Slope  
(Molino #8 well) 

Schematic Stratigraphic Section:  Santa Barbara Channel 

Upper Slope – thinnest, 

condensed intervals and 

erosional surfaces, 

phosphatic and siliceous 

mudstone, slump/debris flows 
 

Lower Slope – expanded 

section, phosphatic and siliceous 

mudstone, dolomite, porcelanite 
 

Basin Depocenters - thickest 

section, biosiliceous, chert, 

porcelanite 

Monterey sediments 

Period of non-deposition 
or erosion 

Chert 



Santa Maria 

50 miles 

N 

Pacific Ocean 

Approximate 
trace of 
major faults 

Present day 
coastline 

Emergent 
or area of 
non-
deposition 

Generalized 
Paleogeography 17 Ma 

Shell Beach, Slope 

Point Buchon, Basinal 

Compare Lithofacies from 
Different Depositional 
Environments 



Approx 10.4 Ma 

Shell Beach 

Point Buchon 

Argillaceous 

Siliceous Dolomitic 

Porcelanite 
Dolomite 

Chert 

Detritus 

Biogenic Silica Carbonate 

Mudstone 

Mudstone 

100  
feet 

Slope 

Basin 

Lower Accumulation Rate 
Higher TOC, Phosphate,  
and Dolomite 

Higher Accumulation Rate 
Increased Silica, Low TOC, 
Low Phosphate, Low Dolomite 

PB 

SB 

Outcrop 
Correlation 



Well-log Cross Section  
Santa Maria Basin Example: Slope – Basin Setting 

 

Pt Pedernales 

Oceano 

North 

396-1 

403-1 

409-1 

409-4 

415-1 

415-2 

416-1 422-2 427-1 

Outcrop 
Truncation and Onlap 

(Sequence Boundary) 

Downlap Surface 

Sisquoc Fm 

6.3 Ma 

South 

10.5 Ma 

8.2 Ma 

Slope Environments Basin Depocenter 

• Comparison and ID of 
Facies Trends 
Requires Comparing 
Time-Equivalent 
Strata 
 

• We Use a Sequence 
Stratigraphic 
Approach to Map 
Equivalent Intervals 
from Different 
Depositional 
Environments 
 

• (Come to the SEPM 
Garrison Research 
Conference in Santa 
Cruz in a couple 
weeks to hear more 
about this!) 



5 miles 

Map of Upper Monterey Paleogeography 

and Depositional Environments 

Non-deposition or Shelf 

 

Upper Slope 

 

Lower Slope 

 

Basin Floor 

 

Present-day Coastline 
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Conception 
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Stratigraphic Cross Section 
 

Upper Slope – 440-2 
 

Lower Slope – 437-1 
 

Basin Depocenter – 435-1 

Santa Maria Basin 

440-2 

435-1 

437-1 



Offshore Santa Maria Basin: 
Spectral Gamma- Ray Correlation Section 
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440-2 
Upper Slope 

437-1 
Lower Slope 

435-1 
Basin 

Simplified Log Model Uses Gamma-Ray 
and Bulk Density Logs to Estimate 
Sediment Components (Ignores 
Carbonates) 
 

• U → TOC 
• K → Detritus 
 

Assume Remainder is Biogenic Silica 



Well-Log Calculated Sediment Accumulation Rates (mg/cm2/yr)  
by Systems Tract and Depositional Environment 
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The Message 

• Spending a little time to review the fundamentals, in this case 
depositional processes and diagenesis, can help guide correlation and 
lithofacies predictions. 

• Lithofacies vary in predictable patterns that can be related to 
depositional environment. 

• A key step to lithofacies prediction is to subdivide the strata into 
chronostratigraphic sequences.   

• The resultant maps and associated products are useful for reservoir- and 
source-rock-quality prediction. 

• Lithofacies packages determine reservoir properties and should guide 
decisions to optimize drilling and completion decisions. 
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