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Abstract 

Understanding rock wettability behavior from micrometer to nanometer scale is of great significance to in-situ hydrocarbon volume calculation 

and oil recovery improvement in tight-rock reservoirs. In this study, comprehensive rock-fluid experiments were performed to investigate 

wettability of three members of the Bakken Formation. The contact angle of selected specimens was measured by applying four types of 

hydrophilic and hydrophobic fluids (i.e., DI water, API brine, IPA isopropyl alcohol, and n-decane) to observe rock wettability at the 

millimeter scale. Then through a spontaneous imbibition test, different fluid flow behaviors in the shale were compared. As capillary-pressure 

greatly controls fluid migration in micro- and nano-pores, mercury injection capillary pressure (MICP) analysis, using non-wetting fluid 

mercury, was conducted to obtain pore system characteristics with multiple connected pore networks at the pore-throat size ranging in mm-nm 

scale. Furthermore, the wettability at nano-pore scale was qualified through a small-angle neutron scattering technique, by comparing the 

volume fraction of intruded fluids.  

The results suggest a distinct difference in the rock wettability between the Upper/Lower Bakken and Middle Bakken, which is mainly caused 

by mineralogical composition and organic matter content. Multiple and complementary approaches enable us to quantify the proportion, and 

size distribution of hydrophilic vs. hydrophobic pore networks in the Bakken Shale. 
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Background & Motivation



(modified from Anovitz and Cole, 2015)

Purpose

Study Purpose:
Characterize pore geometry, 
connectivity, and wettability of the 
Bakken Shale from nanometer to 
micrometer scales

Main techniques:
1. Mercury injection capillary 

pressure (MICP) analysis
2. Small angle and ultra-small angle 

neutron scattering (SANS and 
USANS) measurements
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Workflow

Sample acquisition

Experiments

Contrast matching technique

Contact angle measurement

Imbibition

MICP

SANS/USANS
XRD TOC SEM

To obtain information of
• Mineral composition
• Organic matter content
• Pore type

• Wettability

• Hydrophobic & hydrophilic porosity

• Pore structure:
- Porosity
- Pore size distribution



Experiments - sample acquisition

Anderson 28-33
Depth m (ft) Formation

3067.5 (10064) Upper Bakken
3084.9 (10121) Middle Bakken
3085.8 (10124) Lower Bakken

(modified from Webster 1984)
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00
0

0 50 Miles

Anderson-U 1 cm

Anderson-L 1 cm

Anderson-M 1 cm



Experiments - XRD, TOC, SEM - Upper Bakken
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Bubble 
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Anderson-U
TOC: 13.7 wt.%

• Organic-rich black shales
• Various pore types (mineral pores, organic pores) 



Mineral
Pores

(50-300 nm)

Clay
pores

Mineral
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29%
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14%
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Anderson-M
TOC: 0.5 wt.%

Experiments - XRD, TOC, SEM - Middle Bakken

• Carbonate-rich
• Inter-particle and intra-particle meso/macropores



500 nm

500 nm

Mineral
pores

OM spongy 
pores

TOC = 21.6 wt.%Anderson-L 1 cm

QF
36%

Carbonate
8%

Clay
50%

Pyrite
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Anderson-L
TOC: 21.6 wt.%

Experiments - XRD, TOC, SEM - Lower Bakken

• Organic-rich black shales
• Various pore types (mineral pores, organic pores) 



Experiments - contact angle measurement & imbibition

Two fluids:

• DI water: H2O

• Decane: C10H22 (hydrocarbon)

DI water

(mg/cm3)

Decane

(mg/cm3)

Upper Bakken 9.55 16.85

Middle Bakken 26.86 16.73

Lower Bakken 14.52 18.44

Upper
Bakken

Middle
Bakken

Lower
Bakken

DI water
95.35°

40.09°

107.28°

Decane
< 10°

< 10°

< 10°

Balance Balance

DI water Decane



Washburn Equation:

! = −$%&'()&*
+ ∶ Pore-throat diameter (cm)

γ: Surface tension (485 dyne cm-1)

θ/: Contact angle (130°)

0: Applied pressure (dyne cm-2)

Experiments - MICP
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(Washburn, 1921)



Why neutron scattering?
• Penetrating (low adsorption)

• Nondestructive

• Detect accessible pores and 
inaccessible (closed) pores

Experiments - SANS&USANS - theory

! = #$%&' ()*+
• ,: momentum transfer or scattering vector

• -: neutron wavelength

• ./: scattering angle

Scattered beam
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Q
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ρ-,	ρ0:	scattering	length	density	(SLD)

B = ⁄(. E #
F: size of the scattering object (e.g., pores in rocks)

(Radlinski, 2000)

Detecting size range: ~1 nm – 20 µm (diameter)

Experiments - SANS&USANS - theory

SLD of common minerals: 
(3-4)×1010 cm-2

SLD of air or vacuum: 
400 or 0 cm-2



Experiments - SANS&USANS – experiments & model

! " =
$%
$& " = '( − '* * +,

-./
0
1234

1256
7./*8 9 :;,<("9 $9

PDSP Model
(polydisperse spherical pore model)

-./ = ∫?
@./* 8 9 $9: averaged pore volume

8 9 : power-law pore size distribution factor

BCDE & BCFG: minimum and maximum pore radii

+,: porosity

(Martin Blunt, 2015)

Grain size: 177 – 500 µm

Scattered beam

2q

Q



Results – Porosity, Pore (throat) size distribution

MICP
(Cube)

(U)SANS
(Grains)*

Anderson-U 2.29% 11.69%

Anderson-M 3.71% 8.83%

Anderson-L 2.91% 12.80%

* Averaged value

MICP-Porosity:
middle Bakken > upper/lower Bakken

(U)SANS-Porosity:
middle Bakken < upper/lower Bakken

WHY?

(U)SANS measures closed porosity
Upper/lower Bakken have many 
inaccessible pores (micropores, 
mesopores, macropores) – OM 
pores?



Experiments - SANS&USANS  - contrast matching 

An very useful technique in SANS 
studies to separate connected from 
unconnected porosity

(Anovitz and Cole, 2015)

Inaccessible pores
(white)

Dry sample Saturated with 
DI water 

(H/D mixed)

Saturated with 
Decane

(H/D mixed)

Mineral/pore system:

Accessible pores
(grey)

Inaccessible pores
DI water (H/D mixed)
Decane (H/D mixed)



Anderson-U (Dry)
Anderson-U (Decane)
Anderson-U (Water)

10-3 10-2 10-1

105

102

10-4

10-1

5 nm50 nm500 nm

Anderson-U (Dry)
Anderson-U (Decane)
Anderson-U (Water)

10-5 10-4 10-3

1011

108

105

20 µm 500 nm5 µm

Anderson-U (Dry)

Anderson-U (Decane)

Anderson-U (Water)

1012

108

104

100

10-4

10-5 10-4 10-3 10-2 10-1 100

Q (Å-1)

I(Q
) (

cm
-1

)

Results - Hydrophobic & Hydrophilic Porosity - Upper Bakken

Sample Total
porosity

Dry 14.21%

Decane (H/D mixed) 10.77%

Water (H/D mixed) 9.13%

Hydrophobic Porosity 
(oil-wet)

3.44%

Hydrophilic Porosity
(water-wet)

5.08%

Accessible porosity 8.52%
Inaccessible porosity 5.69%
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Sample Total
porosity

Dry 7.20%
Decane (H/D mixed) 5.08%
Water (H/D mixed) 2.12%

Results - Hydrophobic & Hydrophilic Porosity - Middle Bakken

Hydrophobic Porosity 
(oil-wet)

2.12%

Hydrophilic Porosity
(water-wet)

5.08%

Accessible porosity 7.20%
Inaccessible porosity 0
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Results - Hydrophobic & Hydrophilic Porosity - Lower Bakken

Sample Total
porosity

Dry 11.10%
Decane (H/D mixed) 8.99%
Water (H/D mixed) 8.89%

Hydrophobic Porosity 
(oil-wet)

2.11%

Hydrophilic Porosity
(water-wet)

2.21%

Accessible porosity 4.32%
Inaccessible porosity 6.78%
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