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Abstract 

Wireline formation testing (WFT) tools provide vital information about formation pressure in order to know the current energy available in 
reservoirs. In addition, the different pressure and mobility values delivered by WFT tools could be analyzed as a function of depth, and these 
results used to identify flow units. In some cases, there is a very large number of pressure and mobility values with depth, which makes it 
impractical and inefficient to do this process manually. In these cases, it is possible to develop a pattern recognition workflow, based on 
unsupervised learning, to classify pressure stations with similar characteristics and associate these pressure stations to a flow unit. 

A workflow for pattern recognition based on unsupervised learning was developed to classify pressure stations with similar pressure, mobility 
and depth characteristics and assign those results to the corresponding flow units. A dendrogram or Self-Organizing Map algorithm was used to 
train and automatically classify pressure stations. This workflow based on unsupervised learning, assigns flow units to each pressure station, 
according to the similar characteristics described above. 

During the workflow development, the data set was first processed to make it suitable to use in a dendrogram or Self-Organizing Map. Then, 
an unsupervised learning algorithm was applied to the resulting data in order to classify pressure stations with similar depth, pressure and 
mobility characteristics. Finally, these classification results were assigned to the identified flow units. 

It is concluded that unsupervised learning is a powerful tool to identify flow units based on wireline formation pressure data, because of the 
high capacity for finding hidden patterns. This workflow adds more value to the WFT tool data, in terms of additional information that can be 
related to flow units. Moreover, this workflow reduces the error induced by human intervention during classification process and the time 
invested to do this task. 
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Introduction 
 
Flow unit identification is a very important process performed during reservoir characterization studies in which it is possible to identify and 
estimate different petrophysical and geological characteristics that help to describe the fluid flow in porous media. Once these characteristics 
are quantified, it is relatively easy to classify geological units that share similar fluid flow characteristics. This assessment is very useful when 
studying vertical and lateral continuity in geological units. Wireline formation testing tools provide vital information that can be related directly 
with petrophysical characteristics, such as fluid mobility that supplies fluid flow characteristics from porous media and pressure information as 
a function of depth, which provides information about vertical continuity from contiguous rock volumes. 
 
Flow unit identification assessment most of the time is performed by hand for human experts that use their knowledge and expertise to 
categorize geological units with similar characteristics by using cross plot techniques, histograms plots, etc. However, most of the time they 
have to deal with large amounts of observations and data that consists of more than three dimensions, which makes it very difficult to capture 
their characteristics and relationship in a single plot. 
 
One method that can be used to overcome that kind of limitation is a pattern recognition technique based on unsupervised learning algorithms, 
with which, it is possible to classify large amounts of observations (pressure stations) in certain numbers of classes, where each class is 
comprised of observations that share similar attributes and those attributes are different compared with observations from other classes. 
Unsupervised learning algorithms has been applied effectively in many other Oil and Gas disciplines such as geophysics, petrophysics, as well 
as in other fields of studies like medical applications. Successful utilizations have been described in seismic facies classification (Roy et al., 
2013) and image category detection (Seebock et al., 2017). Among unsupervised learning algorithms, the Self-Organizing Map (Kohonen, 
1982) is commonly used to accomplish this task. The self-organizing map (SOM) is a topographic organization in which nearby locations in 
the map represent observations with similar properties. 
 
This article proposes a workflow to identify and automatically classify hydraulic flow units based on unsupervised learning and WFT data 
attributes. The theory of SOM and the details of the workflow construction will be discussed. The results of three WFT data sets will be 
presented and compared with results from traditional processes to classify hydraulic flow units. This comparison demonstrates the potential of 
unsupervised learning algorithm to classify hydraulic flow units. 
 

Unsupervised Learning 
 
Unsupervised learning involves a process of auto association of information from the inputs in a set of classes with similar characteristics. 
Unsupervised learning algorithms are used to find patterns or features from data sets consisting of input data without labeled responses (Figure 
1). The main objective is to explore the structure of the data sets to extract meaningful information without the guidance of a known target 
output, discovering hidden structures based on similarities. Unsupervised learning needs a criterion to terminate the process, otherwise the 
learning process continues even when a pattern has been found. 
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There are several categories of unsupervised learning techniques that allow us to discover hidden structures in data where we do not know the 
right answer in advance. One of these categories is called clustering which is a technique where the inputs are a set of elements, 𝒳𝒳, and the 
distances function over these elements. That is, a function 𝑑𝑑 ∶  𝒳𝒳 ×  𝒳𝒳 ⟶ ℝ+ that is symmetric, satisfies 𝑑𝑑(𝑥𝑥, 𝑥𝑥) = 0 for all 𝑥𝑥 ∈  𝒳𝒳 and often 
also satisfies the triangle inequality. Alternatively, the function could be a similarity function 𝑠𝑠 ∶  𝒳𝒳 ×  𝒳𝒳 ⟶  [0,1] that is symmetric and 
satisfies 𝑠𝑠(𝑥𝑥, 𝑥𝑥) = 1 for all 𝑥𝑥 ∈  𝒳𝒳 (Shalev-Shwartz and Ben-David, 2014). Additionally, some clustering algorithms also require an input 
parameter k (determining the number of required clusters). After this technique is applied, the result is a partition of the domain set 𝒳𝒳 into 
subsets (Figure 2). That is, C = (C1, C2, …., Ck) where 𝑈𝑈𝑖𝑖=1𝑘𝑘 𝐶𝐶𝑖𝑖 = 𝒳𝒳 and for all 𝑖𝑖 ≠ 𝑗𝑗,𝐶𝐶𝑖𝑖 ∩ 𝐶𝐶𝑗𝑗 = 0. (Shalev-Shwartz and Ben-David, 2014). 
 
In some situations the clustering is soft which mean the partition of 𝒳𝒳 into the different clusters is probabilistic where the output is a function 
assigning to each domain point, 𝑥𝑥 ∈  𝒳𝒳, a vector 𝑝𝑝1(𝑥𝑥), 𝑝𝑝2(𝑥𝑥), … … … . , 𝑝𝑝𝑘𝑘(𝑥𝑥), where 𝑝𝑝𝑖𝑖(𝑥𝑥) = 𝑃𝑃[𝑥𝑥 ∈  𝐶𝐶𝑖𝑖] is the probability that x belongs to 
cluster Ci. 
 
In this article the attention will be focused on a class of unsupervised algorithm based on competitive learning in which the output neurons of a 
neural network compete between themselves for the right to respond resulting in only one neuron being activated at any one time. This 
activated neuron is called the winning neuron. This competition can be induced by having lateral inhibition connections (negative feedback 
paths) between the neurons. The result is the neurons are forced to organize themselves. This network is called a Self-Organizing Map 
(Kohonen, 1982). This article will be concentrated specifically on Kohonen SOM (Figure 3). 
 

Self-Organizing Map 
 
Kohonen SOM is a topographic organization in which nearby locations in the map represent inputs with similar properties. SOM is a group of 
neurons organized in a low dimension mesh where each neuron is represented by a weight vector of m dimensions in which m is equal to the 
input vector dimension. Neurons are connected to adjacent neurons by a vicinity relationship that dictates topographic organization to the map. 
 
The self-organization process involves the following tasks: 
 
Initialization: In this step, all connection weights (wi) are initialized with small random values. 
 
Competition: In each pattern there are input units defined as x = {xi : i = 1, …, D} and the connection weights between the input units i and the 
neurons j, written as wj = {wji : j = 1, …, N; i = 1, …, D} where N is the total number of neurons. Neurons compute their respective values of a 
discriminant function which provides the basis for competition. The discriminant function can be defined as the Euclidean distance (Figure 4) 
between the input vector x and the weight vector wj for each neuron j 
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The particular neuron with the smallest value of the discriminant function is declared the winner. In other words, the neuron whose weight 
vector comes closest to the input vector is declared the winner. 
 
Cooperation: The winning neuron determines the spatial location of a topological neighborhood of excited neurons thereby providing the basis 
for cooperation among neighboring neurons. When one neuron is stimulated, its closest neighbor tends to get excited more than those neurons 
located further away. The Gaussian topological neighborhood (Figure 5) for the neurons is defined as 
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Where Si,I(x) is the lateral distance between neurons j on the grid of neurons and the winning neuron, and 𝜎𝜎 = 𝜎𝜎(𝑡𝑡) is a suitable decreasing time 
dependent function that contains information about the neighborhood radius. 
 
Adaptation: In this process, excited neurons decrease their individual values of the discriminant function in relation to the input units through 
suitable adjustment of the associated connection weights. It is very important to the formation of ordered maps that not only the winning 
neuron gets its weights updated, but as topologically related subsets, its neighbors will have their weights updated as well, with a similar kind 
of correction imposed, although not as much as the winner itself. The appropriate weight update equation is 
 

𝑤𝑤𝑖𝑖(𝑡𝑡 + 1) = w𝑖𝑖(𝑡𝑡) + 𝛼𝛼(𝑡𝑡) 𝑇𝑇𝑖𝑖,𝐼𝐼(𝑋𝑋)(𝑡𝑡)[𝑥𝑥𝑖𝑖 − w𝑖𝑖(𝑡𝑡)] 
 
Where α(t) is the time dependent learning rate and could be represented by a suitable decreasing time dependent function for example, a 
decreasing exponential function (Figure 6). The learning rate decreases as the learning process proceeds.  
 
The weight vector wj associated with the winner neuron is updated in such a way that it moves towards the input vector x (Figure 7). 
 

Building the Workflow 
 
Data Set 
 
The wireline pressure test information that will be used in this study belongs to three vertical wells that were drilled in a sequence of 
interbedded shale sandstone formations. This data set comprises depth, formation pressure and fluid mobility information available for each 
pressure station with a number of pressure stations ranging from 34 to 59. A quality control process was performed on the raw data.  
 
Data Preparation 
 



The data set was organized in an input matrix in order to be used in the unsupervised learning algorithm. In the input matrix, each ith column 
have the elements that represent the measurements taken at each pressure station and each ith row represent the number of observations. For 
example, in well 1 the matrix has a size of 3 columns (characteristics) and 56 rows (number of pressure stations or observations). 
 
Applying the Unsupervised Learning Algorithm 
 
Creating the self-organizing maps: 
 
The SOM will be created with a neural network that will learn how to classify pressure stations and assign those results to the corresponding 
hydraulic flow units. First step is to initialize the SOM where the map size, type of cell and initial weights with random values are specified. In 
this case, the SOM will have an arrangement of 2-dimension layer of 36 neurons (6x6) and hexagonal topology. During this process values for 
learning rate (α) = 0.1 and neighborhood radius (r) = 2 were specified. 
 
Model selection: 
 
Model selection process in this work consists of the selection of the optimum SOM size, which involves the map selection with the right 
numbers of cells that minimizes the average distance between each data vector and its best matching unit (BMU), and the topographic error. 
During the selection process, a sensitivity analysis was performed with different sizes of SOM of 6x6, 8x8, 10x10, 12x12 and 14x14, in order 
to study and analyze the impact of different map sizes in the pattern recognition task. Table 1 contains different SOM characteristics and its 
performance during the training process. 
 
Table 1 shows that in a square map with random initialization vectors, as the map size increases the distance between data vector and its BMU 
decreases. However, the minimum value for topographic error was accomplished by the map size of 12x12 cells. In conclusion, the SOM that 
presents the best performance during the pattern recognition process is the map size 12x12.  
 
The SOM selection process explained above corresponds to 59 pressure observation. Because the SOM size can vary according to the number 
of observations, another SOM selection process was carried out with a reduced number of pressure observations of 34 stations. Similar to the 
previous example, a sensitivity analysis was done with different sizes of SOM of 6x6, 8x8, 10x10, 12x12 and 14x14. Table 2 contains different 
SOM characteristics and its performance during the training process, for a reduced number of pressure observations. 
 
Table 2 shows that in a square map with random initialization vectors, as the map size increases the distance between data vector and its BMU 
decreases while the topographic error increases. In this case, the best performance for the SOM was observed in the map sizes 10x10. 
 
The sensitivity analysis developed with the number of observations demonstrate the SOM size must be proportional to the number of 
observations. For example, in this specific case for a number of observation around 60 the optimum SOM size is 12x12 neurons. Nevertheless, 
for a number of 34 observations the optimum SOM size is 10x10 neurons.  
 



Identification of flow units:  
 
Once the best size of the SOM was identified, the trained map was used to carry out the flow unit identification. An important characteristic in 
this type of SOM is that connection neurons with yellow, green and cyan colors indicate pressure stations with very different characteristics. 
 

Example 1 
 
The available wireline pressure information for well 1 includes depth, reservoir pressure and fluid mobility for a total of 56 pressure stations. 
The unsupervised algorithm was applied to this information and results are shown in Figure 8a. 
 
Figure 8a shows three (03) zones with large differences in pressure trends or very different attributes. These three main zones are well defined 
and separated by several neurons with yellow and cyan colors. Inside these zones, several hydraulic flow units were identified which present 
small differences in pressure station attributes and are separated by 1 or 2 rows of neurons with a light blue color. In total 11 hydraulic flow 
units were recognized and are highlighted with red ovals. This information correlates very well with pressure trends recognized by using the 
pressure profile plot (Figure 8b). 
 
This SOM map has the following characteristics: size 12x12, hexagonal topology, neighborhood radius (r) = 2, learning rate (α) = 0.1 and 
random weights initialization. The SOM performance parameters like average distance between each data vector and its BMU and topographic 
error are 12.8849 and 0.2857 respectively. 
 

Example 2 
 
For well 2, the wireline pressure information includes depth, reservoir pressure and fluid mobility for a total of 59 pressure stations. The 
unsupervised algorithm was applied to this information and results are shown in Figure 9a. 
 
Figure 9a shows four (04) zones with huge differences in pressure trends. These four zones are well defined and separated by several neurons 
with yellow, green and cyan colors. Inside these zones, several hydraulic flow units were identified which present small differences in pressure 
station attributes and are separated by 1 or 2 rows of neurons with a light blue color. In total 20 hydraulic flow units were recognized by using 
SOM and are highlighted with red and orange ovals. This information correlates very well with pressure trends identified with the pressure 
profile plot (Figure 9b). 
 
SOM map used for this example has the following characteristics: size 12x12, hexagonal topology, neighborhood radius (r) = 2, learning rate 
(α) = 0.1 and random weights initialization. The average distance between each data vector and its BMU and topographic error were 15.2526 
and 0.2542 respectively. 
 

 
 



Example 3 
 
The available wireline pressure information for well 3 includes depth, reservoir pressure and fluid mobility for a total of 34 pressure stations. In 
this case, there are a reduced number of observation and pressure station attributes compared with examples 1 and 2. The unsupervised 
algorithm was applied to this information and results are shown in Figure 10a. 
 
Figure 10a shows three (03) zones with large differences in pressure trends. These zones are well defined and separated by several neurons with 
yellow, green and cyan colors. Inside these zones, several hydraulic flow units were identified as a result of small differences in pressure 
station attributes. These pressure stations are separated by 1 or 2 rows of neurons with a light blue color. In total 7 hydraulic flow units were 
identified by using SOM and are highlighted with red ovals. This information correlates very well with different pressure trends recognized 
with the pressure profile plot (Figure 10b). 
 
SOM map used for this example has the following characteristics: size 10x10, hexagonal topology, neighborhood radius (r) = 2, learning rate 
(α) = 0.1 and random weights initialization. In this case the average distance between each data vector and its BMU, and topographic error are 
17.0162 and 0.5000 respectively. 
 

Discussion  
 
Results listed in Table 1 and Table 2 show that the number of observations significantly influences the SOM size, additionally, SOM features 
affect the classification performance. In all cases, results indicate that the classification process was significantly influenced by differences in 
depth and pressure values in pressure stations. It is worth noting that an additional improvement was observed when adding pressure gradient 
to this process. However, no additional improvement was detected when mobility was included in the classification process. These findings 
suggest that depth and pressure data have primary importance for the hydraulic flow unit identification, nevertheless other data sets have 
secondary importance. 
 

Conclusions  
 
Unsupervised learning by using SOM is an excellent tool to identify flow units based on wireline formation pressure data. The classification 
results show that SOMs were able to identify hydraulic flow units with large and small differences in its attributes. 
 
Results indicate that the classification process was significantly influenced by depth and pressure information. No additional improvement was 
observed when using mobility in this process. A sensitivity analysis varying map size must be performed in order to select the optimum SOM 
size with the best performance. 
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Figure 1. Pattern recognition of unlabeled data 



 

Figure 2. Classification process of unlabeled data 



                  

Figure 3. Classification with Self-Organizing Map 



                         

Figure 4. Euclidean distance 



     

Figure 5. Gauss function 



  

Figure 6. Learning rate 



          

Figure 7. Adaptation process 



Figure 8. (a) SOM; (b) Pressure profile. Hydraulic flow unit identification in example 1 



Figure 9. (a) SOM; (b) Pressure profile. Hydraulic flow unit identification in example 2. 



Figure 10. (a) SOM; (b) Pressure profile. Hydraulic flow unit identification in example 3. 



 

Table 1. Comparison results for different SOM characteristics. 



Table 2. Comparison results for different SOM characteristics with reduced number of observations. 
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