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Abstract 
 
One of the great challenges in modeling fluid flow in shale system is the existence of heterogeneities at different scales. While the goal is to 
predict gas and oil production from a well, we learned that processes at the very small scale control the flow. At the molecular scale the 
interaction of fluid molecules with pore inner walls control the process. We have measured interactive forces and performed extensive 
molecular dynamics simulations (MD) to study fluid molecules interactions with pore walls. At the pore scale, SEM images reveal the locale of 
the pores and by using image analysis we extracted important information about pore geometries. We also utilize high pressure mercury 
injection capillary pressure (MICP) and low pressure nitrogen sorption tests to learn about porosity and pore size distribution in shale samples. 
Information about interactive forces, pore size distribution, pore geometry, porosity, and TOC are input data in our models and apparent 
permeability is the model prediction. We present a realistic model that honors heterogeneity of organic matter patchiness and its effect on 
apparent permeability. We validated our model using a set of detailed experimental data on shale samples. These results suggest that 
heterogeneity at small scale could affect the permeability at core scale and pore sizes corresponding to each compartment; organic and 
inorganic should be considered to estimate permeability. The model results also confirm permeability enhancement during sorption process in 
organic matter below critical sorption pressure. 
 

References Cited 
 
Clarkson C.R., N. Solano, R.M. Bustin, A.M.M. Bustin, G.R.L. Chalmers, L. He., Y.B. Melnichenko, A.P. Radlinski, and T.P. Blach, 2013, 
Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion: Fuel, 
v. 103, p. 606-613. 
 
Letham, E.A., 2011, Matrix Permeability Measurements of Gas Shales: Gas Slippage and Adsorption as Sources of Systematic Error: B.S. 
Thesis, University of British Columbia, Vancouver, Canada, 30 p. 
 

http://www.searchanddiscovery.com/documents/2016/41780javadpour/ndx_javadpour.pdf


Naraghi, M.E., F. Javadpour, and L.T. Ko, 2018, An Object-Based Shale Permeability Model: Non-Darcy Gas Flow, Sorption, and Surface 
Diffusion Effects: Transport in Porous Media, p. 1-17. 
 
Singh, H., and F. Javadpour, 2015, Langmuir Slip-Langmuir Sorption Permeability Model of Shale: Fuel, v. 164, p. 28-37.  
doi.org/10.1016/j.fuel.2015.09.073 
 



Integrated Multiscale Research of 

Fluid Flow in Shale: Molecular-to-

Core Scales
Farzam Javadpour

Bureau of Economic Geology

The University of Texas at Austin

AAPG, Salt Lake City, UT

May 22, 2018



 Pores and porosity

• SEM, MICP, He, N2 sorption,

 Oil-in-place

• Saturations

• Preferential adsorption of HC 

components

 Gas-in-place 

• Pressurized gas in pores

• Sorbed gas

• Lost gas estimation

$The value of a reservoir$

 Effective liquid permeability

• Water and HC slip flow 

• Fracture fluid loss

 Effective gas permeability

• Langmuir slip & Knudsen 

diffusion 

• Gas perm measurement & 

models

Oil & gas reserve Oil & gas production, 

fracture fluid injection



What are the sizes of the pores and their 
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How does fluid flow in such pore 

system?

Key research questions related to storage 
and production of mudrock
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stress was collected and used in 

model validation. 

Model prediction: 
200 nD at τ = 2.5

Pp=2000 psi



We have developed the 
technology of multiscale 

research and have tested our 
approach for samples from 

different basins such as 
Eagle Ford. 



Molecular scale
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Exploring the Flow Behavior Using MD

Liquid model EMD NEMD Flow characterizationSolid model

adsorption slip lengthCH4

T=386 K, P=39.5 MPa

Slit aperture：3.44 nm

OM

calcite

montmorillonite

velocity profile



(After Clarkson et al., 2013)



Density and velocity profiles
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Slip lengths in different nanoslits



Enhancement factor versus slit aperture



Estimating the Apparent Permeability Using PNM
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Shale pore network model

Pore type μ σ fraction

OM 0.5474 0.1469 0.4094

IM 1.4124 0.5622 0.5906

 2i iC P F 

Fraction of each kinds of pores
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Property Value

Number of pores 10×10×10

Cube size ~75 μm

Pore-throat ratio 1-3

Fraction of each pore 

type

40.94% OM, 24.56% calcite, 

and 34.50% MMT

Average coordination 

number
4.5

Average pressure 39.5 MPa

Temperature 386 K

Porosity 9.18%±0.34%

Permeability 7.86±1.23 nD

Sensitivity analysis



Apparent permeability versus fraction of organic pores



Fig. 1 Illustration of size and shape of different minerals in the studied Eagle Ford samples 

Size and shape of different mineral types in Eagle 
Ford



Problem Statement

Naraghi et al., 2018



An example of a realization



Pressure field

Slip flow
Knudsen diffusion



Validation In-house experiments



Validation  Literature Data

Experimental data: 

Letham 2011
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Effect of sample size
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Sorption effect on permeability
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Summary and Conclusion

 We present a multiscale framework to model fluid flow through mudrock

and to estimate apparent permeability.

 The transport behavior of fluid in an organic nanopore is different from

that within inorganic minerals.

 At high pressures, gas transport through shale nanopores can be fairly

characterized by the slip-corrected Poiseuille equation.

 Connectivity of pores in organic, in inorganic and between organic and

inorganic are important factors in controlling fluid flow.
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