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Abstract 

A dynamic heating experiment using a field-emission environmental scanning electron microscope (FE-ESEM) equipped with a heating stage 
was designed to observe microstructural changes in a variety of organic macerals identified by optical organic petrology. The same region of 
interest was compared before and after heating by employing correlative optical and electron microscopy. An Ar-ion milled surface was 
prepared from a thermally immature (0.50 %Ro vitrinite reflectance), organic-rich (5-7 wt% TOC) outcrop sample of the Boquillas (Eagle 
Ford) Formation. A variety of organic macerals were identified by standard optical organic petrography including: (1) structured particles of 
vitrinite, inertinite, liptinite, and organo-mineral aggregates, 2) diffuse amorphous organic matter, and (3) solid bitumen.  

The sample was heated in the FE-ESEM to 500oC at a rate of 1oC/min with a constant 2.0 Torr (266 Pa) vapor pressure. Static and video 
secondary electron images were captured using a heat compatible gaseous detector at 30 kV accelerating voltage. High resolution backscattered 
FE-SEM mosaics were also prepared before and after heating. The results of the experiment revealed that the alginite macerals were the most 
altered by heating with elongate voids created presumably due to the transformation of kerogen to petroleum. Volumetric changes were also 
observed in solid bitumen and amorphous organic matter. As anticipated, no detectable changes were observed in the inertinite and gas-prone 
vitrinite macerals. The voids created within the alginite macerals are atypical of the commonly observed organic pores in natural thermally 
mature subsurface samples. The slot-like voids associated with the alginite macerals are thought to be unlikely preserved at reservoir conditions 
due to closure at overburden pressure. The processes governing the development of organic matter porosity remains poorly understood because 
the type of organic matter pores typically observed in organic-rich mudstone reservoirs have yet to be duplicated in the laboratory by the 
various artificial thermal maturation experiments published to date. 
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Introduction

• The chemical transformation of organic matter to oil & gas 
during heating is well understood from laboratory pyrolysis 
experiments

• The physical changes of organic matter during thermal 
maturation are poorly understood
– including the development of pores in organic matter observed in 

unconventional shale (mudstone) reservoirs



Research Questions

• What physical changes occur during transformation of 
kerogen to hydrocarbons?
– Organic matter, rock, organic-mineral interactions?

• In what types of organic matter (macerals) do pores develop?
• What temperature do organic matter pores form?
• How do these changes correlate to pyrolysis (RockEval)?

– S1, S2, S3, Tmax, etc.
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Previous Studies
• Dahl et al., 2015 demonstrated SEM images could be 

captured during artificial thermal maturation using an 
environmental SEM equipped with a heating stage element
– Same sample, 25 oC/min to 550 oC (10 wt% TOC)

• Ko et al., 2016 compared SEM images of unheated samples 
with samples heating by gold-tube anhydrous pyrolysis 
– Different samples, constant temp 130-425 oC, 72 hrs (1.6 wt% TOC)

• Hooghan et al., 2017 compared the same sample before and 
after low temperature pyrolysis
– 300-350 oC at 15 hrs, VR 0.5-1.2 %Ro



Study Objectives

• Observe the evolution of microstructural changes of a variety 
of types of organic matter (macerals) during heating of a 
thermally immature shale reservoir (Eagle Ford)

• Heating stage environmental SEM
– Same sample
– Same region of interest
– Same macerals
– Before, during, and after heating



Methodology
• Immature outcrop sample (VR 0.5 %Ro)

– 1 in (25 mm) polished plug (Ar-ion mill)
– XRD & geochemical analyses

• Maceral identification
– Standard optical petrography (white & UV light)
– ROI’s identified & optical image mosaics prepared

• SEM examination before, during, & after heating
– 3 mm x 1.4 mm micro plug over ROI
– Environmental SEM GSED
– FE-SEM BSE image mosaics



Sample Analysis
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Organic Matter
• Maceral- microscopically identifiable organic component in 

sedimentary rocks
• Liptinite- (oil prone, type I, II kerogen)
• Vitrinite- (gas prone, type III kerogen)
• Inertinite- (non-generative, type IV kerogen)
• Amorphous organic matter (AOM)- unstructured macerals
• Solid Bitumen- secondary, void-filling AOM
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Identified Macerals
• Amorphous organic matter 

– Dull fluorescent & micronized
• Liptinite

– Lamalginite & telalginite
• Vitrinite
• Inertinite

– Fusinite & semifusinite
• Organo-mineral aggregate
• Solid bitumen

– foraminifera chamber fill
– scattered lenses
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Comparative Microscopy
Reflected White Light Backscattered Electron SEM
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Heating Stage ESEM
• Sample heated 200-500 oC at 

1 oC/min (5 hrs)
– Constant vapor pressure (266 Pa)

• Static SE images captured 
every 10 oC
– Gaseous SE detector, 30 kV

• Video images recorded 
throughout experiment



Time Lapse SE Imaging

Increasing electron
charging with time 
noted along edge of 
alginate (white rim)

Presumably reflects
kerogen transformation 
to oil

50 µm 50 µm 50 µm

50 µm 50 µm 50 µm



Results
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Liptinite (Alginite)
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Solid Bitumen
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Conclusions
• Most significant changes observed in oil prone macerals 

liptinite (alginate) & AOM, and secondary solid bitumen
– Solid organic matter presumably transformed to oil

• No significant changes observed in gas prone and inert 
macerals vitrinite & inertinite as anticipated

• SEM gray scale contrast observed in artificially matured 
alginate may reflect compositional changes during the 
transformation of kerogen to oil
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Final Thought
Heating experiments to date have produced relatively large 

kerogen moldic pores and cracks, but have failed to replicate 
natural organic matter pores observed in shale reservoirs 

Dahl et al., 2015 This Study
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