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Abstract 
 
Facies modelling seeks to reproduce the geometry and distribution of the reservoir-forming sedimentary bodies in three dimensions to provide 
a framework for the construction of property and flow models. However, variogram-based facies modelling techniques are not well suited to 
the reproduction of complex geological shapes (e.g., sinuous fluvial channels), whereas object-based simulations may fail to honour 
conditioning data (e.g., well data). New workflows have been developed for the generation of fluvial reservoir models with improved 
geological realism compared to outputs of conventional methods. These workflows are suitable for modelling reservoirs that comprise fluvial 
meander-belt deposits, and can therefore provide the models of spatial heterogeneity (training images) required to apply simulation techniques 
based on multi-point statistics (MPS), which are then useful to integrate complex geological patterns. A library of training images from which 
MPS modelling algorithms replicate geological patterns has been developed using quantitative information derived from a relational database 
of geological analogues (Fluvial Architecture Knowledge Transfer System, FAKTS), and a forward stratigraphic modelling tool that simulates 
fluvial meander-bend evolution and resulting point-bar facies organization (PB-SAND). The devised training images incorporate fundamental 
features of the facies architecture of fluvial point-bar elements and larger meander belts composed of these and related elements. The 
application of training images has been optimized to three widely used MPS algorithms: SNESIM, DEESSE and FILTERSIM. A quantitative 
and qualitative quality check of MPS realizations has been performed whereby facies proportions, facies relationships, element geometries, 
dimensions, control of non-stationarity and runtime are optimized for particular fluvial successions being modelled. The sensitivity of multiple 
simulation results to input parameters has been analysed to define preferred modelling recipes, paired to each training image and to each MPS 
modelling algorithm. Research outcomes are the development of an extensive library of training images for MPS simulations of the 
architecture of subsurface successions deposited by a variety of types of meandering fluvial systems. Devised workflows are applicable to 
multiple MPS algorithms, and enable off-the-shelf training-image selection for the effective establishment of a hierarchical approach to facies 
modelling. 
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MAIN POINTS AND AIM OF THE PROJECT

1- What are facies models? Why do they need to be improved?

2- Multipoint statistical simulation introduction (MPS)

3- A novel facies modelling workflow for fluvial meandering system

- FAKTS analogue database

- PB-SAND program for forward stratigraphical models

- Deliver an effective and fast methodology by which training-image building can be informed quantitatively

- A workflow for facies modelling using MPS applicable in the oil and gas industry, geothermal and hydrogeology

OUTLINE

AIMS

4- Applications to SNESIM and DEESSE (Multipoint Statistical simulation)

- Training Image Library



Property models 
(Vcl,Ф,Ҡ, Sw…) Flow Models

Facies models
Lack of data
(Well data, core data, seismic data)

Geostatistical methods
“The need to fill the gaps”

1- Pixel-based methods (I.e., SIS)

- Does not reproduce curvilinear shapes
- Relies on variograms…

2- Object-based methods 

- Not good at honouring hard data

Why does facies modelling matter? Why do facies models need to be improved?

Macnchuk et al. 2011

WORKFLOW AND GEOSTATISTICAL METHODS



MULTIPOINT STATISTICAL SIMULATIONS (MPS)

Multipoint statistical simulations combines both the capability of honouring hard data and the ability to reproduce complex geological shapes

Needs a TRAINING IMAGE The digital representation of the heterogeneities of the reservoir rock.

The training image substitutes the variograms.

Satellite image Object-based generated 3D realization
Ringrose & Bentley_2015

Facies models based on outcrop studies

"Shiers (2017) and Ghazi and Mountney (2009)"

Need to be “stationary” 

1: Patterns are reasonably homogeneous in the Training Image

2: Patterns should be repeated in the Training Image 

3: Patterns should not be confined to specific locations in the Training Image 



COLLATION OF QUANTITATIVE DATABASE OF APPROPRIATE CASE STUDY EXAMPLE

(Yan et al., 2017)

000000

000000

COLLATION OF QUANTITATIVE DATABASE OF APPROPRIATE CASE STUDY EXAMPLE

FORWARD NUMERICAL SIMULATION OF FLUVIAL POINT-BAR EVOLUTION 



FAKTS (Fluvial Architecture Knowledge Transfer System)

Facies Proportions Facies Geometries Reservoir Modelling ConstraintsFacies transition statistics

LITERATURE AND FIELD STUDIES



FORWARD STRATIGRAPHIC MODELLING OF FLUVIAL POINT-BAR ELEMENTS USING PB-SANDS

3D STRATIGRAPHICAL MODELS
Architecture of modelled 
point bar in 3D-view

Cross-sections examples

EXPANSIONAL MEANDER EXAMPLE

Yan et al., 2017. Computers & Geosciences, 105, 65-80

-Deterministic-stochastic mixed

-Geometric-based

-Process-based



TRAINING IMAGE LIBRARY



2 CASE STUDY (EXAMPLE 1 and 2)

DEESSE 
(Mariethoz et al. 2010)

2 algorithm will be tested and compared:

EXAMPLE 2
EXPANSIONAL BAR

(Partially STATIONARY EXAMPLE)

EXAMPLE 1
EXPANSIONAL BAR

(NON-STATIONARY EXAMPLE)

SNESIM 
(Strebelle, 2002)

-Search Template Geometry

-Number of nodes

-Number of replicates
-Servosystem

-Multigrids

-Subgrids

QUALITY CHECK:

-Search Window

-Number of nodes

-Search distance

-Fraction

-Support Radius

-Deactivation Threshold

-Geometries

-Proportions

-Trends

-Run-Time

-Noise

-Stationarity

Probability Rotation Scaling Regions

AUXILIARY VARIABLE MAPS
(Handling non-stationarity and include trends)



AUXILIARY VARIABLE MAPS (PROBABILITY MAPS CONSTRUCTION)

ZONE 3 : Buffer or transitional zone

ZONE 2 : Floodplain deposits
ZONE 1 : Main sand fairway

ZONE 1
ZONE 2

ZONE3

Songhua River, China (NASA)

3 km



AUXILIARY VARIABLE MAPS (PROBABILITY MAPS CONSTRUCTION)

ZONE 3 : Buffer or transitional zone

ZONE 2 : Floodplain deposits
ZONE 1 : Main sand fairway

ZONE 1

ZONE3

ZONE 2

Songhua River, China (NASA)

0    (ZONE 1)

0.5  (ZONE 3)

1    (ZONE 2)
3 km



AUXILIARY VARIABLE MAPS (PROBABILITY MAPS CONSTRUCTION)

Songhua River, China (NASA)

Facies 0= Floodplain

Facies 1= Point bars

Facies 2=Shale Plugs (Channel-fill deposits)

Floodplain Point Bars Ch-Fill

ZONE 1=1

ZONE 2=0.5

ZONE 3=0

0.1

0.5

1

0.6 0.3

0.25 0.25

0 0

ZONE 1 : Mostly Point-bars 
and channel-fill deposits

ZONE 2 : Buffer with 50% 
probability of point-bar/Channel-fill 
and 50% of floodplain deposits

ZONE 3: 100% probability 
of floodplain deposits 

3 km



AUXILIARY VARIABLE MAPS (PROBABILITY MAPS CONSTRUCTION)

1- Based on SOFT DATA

Alqahtani A. et al. 2015. Sedimentology 62, 1198-1232 



AUXILIARY VARIABLE MAPS (PROBABILITY MAPS CONSTRUCTION)

- Channel-belt estimates can be 
easily obtained using FAKTS:

- Sedimentological analysis at a 
BIG SCALE required to interpret 
the fluvial geological setting.

- Facies Proportions

- Geometries size

- Net to gross (Shale/sand proportions)

2- Based on FAKTS estimates (Channel-belt case) 

- Different solutions can be created 
stochastically with an object-based algorithm.

Songhua River, China (NASA)

3 km



EXAMPLE-1: EXPANSIONAL BAR (STATIONARY EXAMPLE)

- Homogeneous Patterns

- Repeated objects 

- Only One single channel belt

EXPANSIONAL BAR CASE 
(PARTIALLY STATIONARY

TRAINING IMAGE)



EXAMPLE-1. SIMULATION WORKFLOW 

STEP 1: Category reduction (From 5 to 3 facies)

STEP 3:Upscaling / Downscaling STEP 4: Sensitivity Phase STEP 5: Auxiliary Variable Maps

STEP 2: Adding Stationarity

Facies 0 Facies 1 Facies 2

AREA 1

AREA 2

AREA 3

0.1

0.5

1

0.55 0.35

0.25 0.25

0 0

SNESIM (Strebelle, 2002)

-Search Template Geometry
-Number of nodes
-Number of replicates
-Servosystem

DEESSE (Mariethoz et al. 2010)
-Search Window
-Number of nodes
-Search distance
-Fractions

Flood-plain deposits

Point-Bar deposits
Channel-Fill deposits

SIMULATION GRID
X: 250
Y: 250
Z: 50

-TAU model probability for SNESIM

-Support radius and Deactivation 
threshold for DEESSE.

Training Image
Number of Cells

X: 90
Y: 210
Z: 33

CELL SIZE
X: 20
Y: 20
Z: 0.25



EXAMPLE-1. STATIONARY TRAINING IMAGE REALIZATIONS (3 facies)

Parameters:
Search Radius: 4000x4000x15, N=70, Replicates=20, Serv=1, Multigrids=4
Condition to Auxiliary Probability (TAU MODEL 2 1)

SNESIM

Flood-plain deposits

Point-Bar deposits
Channel-Fill deposits

Search Window: 20x20x8, N=35, Distance=0.25, Radius=10, Deact. Threshold=5
Condition to Auxiliary Probability and Rotation map

Parameters:

Runtime <2 min/realization DEESSESIMULATION GRID
X: 250
Y: 250
Z: 50

CELL SIZE
X: 20
Y: 20
Z: 0.25

TI Number of Cells
X: 90
Y: 210
Z: 33

Runtime <2 min/realization



EXAMPLE-1. STATIONARY TRAINING IMAGE REALIZATIONS (5 facies)

SNESIM DEESSERuntime <5 min/realization

Parameters:
Search Radius: 4000x4000x30, N=70, Replicates=20, Serv=1, Multigrids=4
Condition to Auxiliary Probability (TAU model 2 1)

SIMULATION GRID
X: 250
Y: 250
Z: 50

CELL SIZE
X: 20
Y: 20
Z: 0.25

TI Number of Cells
X: 90
Y: 210
Z: 33

Runtime <5 min/realization



EXAMPLE-2. EXPANSIONAL BAR (NON-STATIONARY EXAMPLE)

- No repetition of patterns

- Patterns confined to 
specific locations

EXPANSIONAL BAR CASE
(NON-STATIONARY
TRAINING IMAGE)



EXAMPLE-2. SIMULATION WORKFLOW

Grid TI

STEP 2: Upscaling / Downscaling STEP 3: Sensitivity Phase STEP 4: Auxiliary Variable Maps

STEP 1: Category reduction (3 facies)

Facies 0 Facies 1 Facies 2

AREA 1

AREA 2

AREA 3

0.1

0.5

1

0.55 0.35

0.25 0.25

0 0

Flood-plain deposits

Point-Bar deposits

Ch-Fill deposits

SNESIM (Strebelle, 2002)

-Search Template Geometry
-Number of nodes
-Number of replicates
-Servosystem

DEESSE (Mariethoz et al. 2010)
-Search Window
-Number of nodes
-Search distance
-Fractions

-TAU model probability for SNESIM

-Support radius and Deactivation 
threshold for DEESSE.

-Rotation Map (blue:0°, Red: 180°)

SIMULATION GRID
X: 250
Y: 250
Z: 50

Training Image
Number of Cells

X: 128
Y: 144
Z: 39

CELL SIZE
X: 20
Y: 20
Z: 0.25



EXAMPLE-2. NON-STATIONARY TRAINING IMAGE REALIZATIONS (3 facies)

Parameters:
Search Radius: 2000x2000x15, N=60, Replicates=20, Serv=1, Multigrids=4
Condition to Auxiliary Probability and Rotation map

Search Window: 25x25x10, N=35, Distance=0.25, Radius Threshold=4
Condition to Auxiliary Probability and Rotation map

Runtime <2 min/realization
Runtime <2 min/realizationSNESIM DEESSE

Parameters:

Flood-plain deposits

Point-Bar deposits
Channel-Fill deposits

SIMULATION GRID
X: 250
Y: 250
Z: 50

CELL SIZE
X: 20
Y: 20
Z: 0.25

TI Number of Cells
X: 128
Y: 144
Z: 39



EXAMPLE-2. NON-STATIONARY TRAINING IMAGE REALIZATIONS (5 facies)

Runtime <20 min/realization

SNESIM
Runtime <20 min/realization

DEESSE

Parameters:
Search Radius: 2000x2000x15, N=60, Replicates=20, Serv=1, Multigrids=4
Condition to Auxiliary Probability and Rotation map

Search Window: 25x25x10, N=35, Distance=0.25, Radius=5, Deact. Threshold=4
Condition to Auxiliary Probability and Rotation map

Parameters:

SIMULATION GRID
X: 250
Y: 250
Z: 50

CELL SIZE
X: 20
Y: 20
Z: 0.25

TI Number of Cells
X: 128
Y: 144
Z: 39



CONCLUSIONS AND FUTURE WORKS

Realizations performed following this workflow attempted to model the sedimentary architecture of fluvial meandering systems, at bar and facies scales.

Apply the workflow to a real-case scenario where:

-Training images can be built based on analogue data;

-Well data can be used to define training-image lithotypes;

-Soft data (e.g., seismic attributes) can be used to create probability maps;

-A connectivity study can be performed to compare results with those of other pixel- and object-based methods.

The Fluvial Research Group (FRG) gratefully acknowledges the Randlab Group (University of Neuchâtel) for providing DEESSE code licenses and 
our sponsors for financial support.

Training images with different levels of non-stationarity can be handled by the use of probability maps.

CONCLUSIONS

FUTURE RESEARCH

AKNOWLEDGEMENTS
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