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Abstract 

 

We apply instantaneous seismic attributes to a stacked P-wave reflected seismic section in the Tenerife field located in the Middle Magdalena 
Valley Basin (MMVB) in Colombia to estimate effective porosity (φe), water saturation (SW), density () and volume of clay (Vclay) at the 
seismic scale. The well logs and the seismic attributes associated with the seismic trace closer to one of the available wells is the information 
used to train some multi-layered Artificial Neural Networks (ANN). We perform data analysis via the Gamma test, a mathematically non-
parametric nonlinear smooth modeling tool, to choose the best input combination of seismic attributes to train an artificial neural network 
(ANN) for estimating porosity, density, water saturation and volume of clay. Once the ANN’s are trained, these are applied to predict these 
parameters along the seismic line. This is a significant result that shows for the first time a petrophysical characterization of this field at seismic 
scale. From the continuous estimations of volume of clay we distinguish two facies: sands and shales, and these estimations confirm the 
production of the Mugrosa C-Sands zone and we draw brown clay that correlates with the high amplitude attributes and the yellow sand 
correlates with the low amplitude attributes.  
 

Introduction 

 
Exploration in Sub-Andean basins in Colombia has been traditionally challenging due to the complex geology, rough topography and 
inaccessible areas. The MMVB is one the most prolific petroleum basins of Colombia with a long history of hydrocarbon exploration that 
started with the discovery of a giant oil field called La Cira-Infantas, in 1918. The oilfields in the basin occur mainly as either structural or 
stratigraphic traps in Tertiary clastic reservoirs. The Tenerife Field (see Figure 1), operated by Ecopetrol S.A., is located in the central MMVB, 
about 20 km south-west of the giant La Cira-Infantas Field. This field was discovered in 1971 after positive results of drilling the Tenerife-1 
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well. The appraisal strategy was followed by the drilling of wells Tenerife-2 and Tenerife-3. The development of the field was stopped later 
due to failed results in Tenerife-3. Tenerife-1 and Tenerife-2 had production of about 100 STBO/day of 22.8 API crude oil; however, they are 
almost totally depleted today, see Ecopetrol (1983) and Sandoval (2009).  
 

Analysis and Interpretation of Field Data 

 
We use well log and seismic data from the Tenerife Field, in particular we focus our attention in the 2D-3C P-wave reflected stacked seismic 
section with an extension of 9 km with 300 sources and 901 receivers. This line crosses the borehole Tenerife-2, which has the following well 
log information: spontaneous potential (SP), resistivity and induction (ILD), sonic log of P-wave. Some of these logs are more recent such as 
the Gamma Ray (GR), dipolar sonic logs, Check shots and one Offset Vertical Seismic Profile (OVSP). The well Tenerife-2 has a depth of 
7513 ft (see left hand side of Figure 2), the information available from the core analysis shows that Tenerife-2 crosses some formation units 
such as Colorado (depth 2462. ), the top of Mugrosa zone (depth 5045.83 ft), the unit Mugrosa B (depth 5004.17 ft) and finally Esmeraldas 
formation Zone D (depth 7500 ft aprox). An inverse fault crosses Tenerife-2 at depth of approximate 4710 ft. The formation unit Mugrosa C is 
divided into: Mugrosa C-Sands and Mugrosa C-Shales. The first one has more oil sands, this fact defines Mugrosa C-Sands as the main 
reservoir of the basin (Figure 2). It is a sandstone filled with oil, it has a porosity between 20-25% a water saturation SW between 40-50%, an 
oil saturation between 30-40% and gas saturation between 10-30% and the approximate permeability is 40.5 cp.  
 
With respect to the well Tenerife-2 the zone of Mugrosa C-Sands is located between depths 6857-7255 ft at the top of this formation there are 
thin layers no greater than 10 ft with high clay content greater that 80%, 10% of sandy clay, pyrite and other minerals. From this top to the 
bottom we have large sand bodies greater than 100 ft depth with high porosities greater that 15% and small intercalations of clay with small 
thicknesses of approximately 5 ft. On the other hand, Mugrosa C-Shales defines the bottom of Mugrosa C-Sands, with a thickness of 244 ft, it 
is composed of 80% clay type shale, with a porosity less than 15%; low or null hydrocarbon saturation and very low permeability. The 
petrophysical model is build based on this information. We compute pseudo-logs for the volume of clay (Vclay) using Spontaneous Potential 
(SP) and the Gamma Ray (GR) well logs. To compute φe we use Raymer equation using the standard parameters for sand formations. The 
water saturation (SW) was computed using Simandoux equation for sandstones when clays do not have high cationic interchanges such as in the 
Tenerife field. This methodology is based on Mavko et al. (2009) and Tiab and Donaldson (2004).  
 

Neural Network Design and Training 

 
Our goal is to establish a model to predict φe, , SW and Vclay logs using a seismic section in the depth interval [2615-7414 ft. that corresponds 
to the time interval 574-1438 ms. In this interval we have well log information from the borehole Tenerife-2 as the training data set. We follow 
the same approach given in Parra et al. (2015), Iturrarán-Viveros and Parra (2014), Iturrarán-Viveros (2012) and perform the Gamma test 
analysis, see Jones (2004) to select the best combination of inputs to train an ANN. This is a critical step to devise a systematic feature 
selection scheme that provides guidance on choosing the most representative features for estimation of petrophysical parameters. We take the 
definitions of seismic attributes given in Taner et al. (1994), Taner (1997), Taner (2001), Chopra and Marfurt (2007), Barnes (2015) and we 
start with a collection of 19 seismic attributes (including time): time=t , seismic trace = s(t), variance=σt2 , attenuation, sweetness, RMS 



amplitude = ARMS(t), inst. bandwidth=ωB, Local structural azimuth, Local flatness, iso-frequency, Dip illumination, Dip deviation, Chaos, 
amplitude, edge detection, envelope, edge evidence (from amplitude contrast), AVO and First derivative = ds(t)/dt. According to the Gamma 
test for this data set the best combination of attributes to estimate SW is: s(t), σt2, A (t), ω , envelope, edge evidence and ds(t).  In Figure 3 we 
can see the final estimations at seismic scale of SW obtained by the trained ANN. 
 

To estimate , the Gamma test indicates that the best combination of attributes is: t, s(t), sweetness, Local structural azimuth, Local flatness, 
Dip illumination, Dip deviation, Chaos, amplitude, edge detection, envelope, edge evidence (from amplitude contrast), AVO and First 
derivative = ds(t)/dt. Finally, to estimate Vclay we used: s(t), attenuation, sweetness, ωB, local structural azimuth, iso-frequency, Dip deviation, 
Chaos and ds(t). Using dt the most suitable combination of attributes for each petrophysical parameter we have trained using three different 
algorithms of supervised multi-layered Artificial Neural Networks: Backpropagation, Broyden-Fletcher-Goldfarb-Shanno (BFGS) and 
Conjugate Gradient. The best results obtained for  were using a BFGS with 14 inputs, two hidden layers of 8 neurons each and one output 
(14-8-8-1). In order to estimate φe we used a Backpropagation ANN with 8 inputs, two hidden layers of 10 neurons each and one output (8-10-
10-1), SW a with a (9-10-10-1) BFGS ANN and Vclay using a (10-10-10-1) Conjugate Gradient ANN.  
 

We have trained the ANN and test its capability of generalization using a testing/validation data set (20% of the original data set) which was 
not known for the ANN and the agreement was very satisfactory. Once the ANN show the capability of generalization we feed the trained 
ANN with the 901 seismic traces that correspond to the area of interest close to the borehole Tenerife-2. The estimations obtained at seismic 
scale using these ANN for φe are shown in Figure 4. Figure 5 shows the estimations of  at the seismic scale. The well used for this study, the 
Tenerife-2, is located in the middle of the section. The high estimations of porosities in Figure 4 are in red, and low porosities are in green, the 
same for SW a in Figure 3 high water saturations are in red and low water saturations are in green. When estimating the Vclay we observed that 
the layered structure was very distinctive so we decided to establish a facies characterization by assigning class 1=sand to the values of Vclay < 
0.5 and class 2=shale to those values that satisfy Vclay ≥ 0.5. Figure 6 shows the result of this facies classification. Some brown clay correlate 
with the high amplitude attributes and the yellow sand correlate with the low amplitude attributes. The higher amplitude attributes are small 
reflectors that are caused by the change on the impedance contrast between the brown clays and the yellow sands. The brown clays are stiffer 
(compact material of low porosity). On the other hand the yellow sands are softer and probably with some degree of porosity. Since the yellow 
clay is associated with dispersive waves, this suggests high attenuation. One possible interpretation is that the yellow clay unit has a laminated 
structure that can produce the waves to be dispersive and broaden (this is called scattering attenuation effects). The soft brown clays with 
yellow clays are part of laminated structures as well. There might be two types of brown shales some are more stiff than others. The least stiff 
brown clays and the yellow clays form the laminated structures.  
 

Conclusions 

 
The facies estimated here at the seismic scale agree with the sand bodies and their small clay intercalations identified by the well logs. The 
results far away from the borehole also allow us to identify continuous sand bodies with shaly intercalations and in many cases it is possible to 
distinguish between the limits of the sand zone. On the other hand, the results for φe and SW in the well neighborhood are in agreement with 
core analysis and well log information (Figure 7). We observe a good correlation with the amplitudes of the seismic data.  
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Figure 1. (a) Location of the Middle Magdalena Valley Basin. (b) Geometry of the seismic acquisition. Red dots denote the wells' locations 
 



 
 

Figure 2. Well logs from Tenerife-2. (a) Full well-log set for all depths. (b) The eleven paying zones in this well. 



 
 

Figure 3. Estimation of SW at the seismic scale. 



 
 

Figure 4. Estimation of effective porosity at the seismic scale 



 
 

Figure 5. Estimation of   at the seismic scale. 
 
 

 
 

Figure 6. Facies (sands in yellow, shales in brown) at the seismic scale obtained from the estimation of Vclay . 



 
 

Figure 7. Well log information in each track SW, φe, Vclay  in blue lines, green lines represent the ANN estimations and in red the absolute error. 
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