Permian Stacked-Pay Potential Assessment Using Multi-Disciplinary Analytics* #### Murray Roth¹ and Michael Roth¹ Search and Discovery Article #11150 (2018)** Posted November 12, 2018 *Adapted from oral presentation given at AAPG 2017 Annual Convention and Exhibition, Houston, Texas, April 2-5, 2017 ¹Ground Truth Consulting, Highlands Ranch, Colorado, United States (<u>murray@groundedtruth.com</u>) #### Abstract Nearly 100 years after the original discovery wells, the Permian Basin continues to challenge "conventional thinking" and provide opportunities for new understandings and economic opportunities. In this current phase of unconventional Permian development (i.e. hydraulically fractured horizontal wells), a significant case-in-point is the Alpine High focus upon deeper Pennsylvanian, Woodford, and Barnett reservoirs. A comprehensive understanding of the Permian Basin: spanning the Delaware, Central Platform, and Midland Sub-basins specifically; requires an evolving understanding of the interplay of thousands of feet and hundreds of million years of deposition. Accessing regional interpretations of over 100,000 vertical wells, a time-equivalent framework of major Paleozoic sequence depths and thicknesses is introduced. Using a database of well over 10,000 horizontal wells: drilling, completions, and production data are used in tandem with geologic framework data to develop analytic models to isolate regional trends of major reservoirs. Engineering variations in well lengths (and paths), proppant intensity, frac type, and more, are modeled from statistically significant sampling of horizontal wells using multi-variate analytics techniques. Practically, this workflow "normalizes" the impact of different engineering decisions to isolate the impact of geology on well performance. What is clear is the significance of hydrocarbon maturity and depth (i.e. reservoir pressures) in the understanding of oil and gas prospects across the Permian. While the core of the Delaware or Midland sub-basins may have 10 or more distinct landing zone targets (spanning the Bone Springs/Wolfcamp and Spraberry/Wolfcamp benches respectively); the Permian Basin fringes may offer a half dozen or more targets (spanning Wolfcamp/Pennsylvanian/Woodford/Barnett). What is clearly illustrated is that thousands of feet of potential play exist across very large extents of the Permian, requiring increasingly more in-depth understanding of depositional patterns, lithology, mineralogy, geomechanics, and more. Using basic drilling and completions cost estimates, "penalty weightings" are estimated to better understand the relative economic viability of multi-zone development across the play. As the "modern Permian" moves into more mature stages of unconventional field development, it is critical to deploy optimized pad drilling and lateral/vertical spacing strategies, driven by grounded geologic input. ^{**}Datapages © 2018 Serial rights given by author. For all other rights contact author directly. DOI:10.1306/11150Roth2018 #### **References Cited** Breton, C.L., S.P. Dutton, and R.F. Broadhead, 2008, Digital Oil-Play Maps of the Permian Basin: AAPG Annual Convention, San Antonio, Texas, April 20-23, 2008, <u>Search and Discovery Article #40333 (2008)</u>. Website accessed October 2018. Handford, C.P. 1981, Sedimentology and Genetic Stratigraphy of Dean and Spraberry Formations (Permian), Midland Basin, Texas: American Association of Petroleum Geologists Bulletin, 65/9, p. 1602-1616. doi:10.1306/03B5962A-16D1-11D7-8645000102C1865D # PERMIAN STACKED-PAY POTENTIAL ASSESSMENT USING MULTI-DISCIPLINARY ANALYTICS # Bracketology (according to IBM Watson...) With "Big Data Analytics" do we even have to play the games anymore.....? #### **Gross Permian Basin Cross-Section** #### **Delaware versus Midland** #### Permian Basin Formations #### Delaware versus Midland Leonardian versus Wolfcampian | Period | Series | Formations | | |--------------------------------|---|---|--| | Guadalupian
(271-260 mya) | Delaware
Group | Lamar Bell Canyon
Cherry Canyon
Brushy Canyon | | | Leonardian
(280-271 mya) | Upper Avalon Shale
Lower Avalon Shale
1st Bone Spring
2nd Bone Spring
3rd Bone Spring | | | | Wolfcampian
(299-280 mya) | Wolfcamp
Pennsylvanian | | | | Pennsylvanian
(323-299 mya) | | | | | Central Basin Platform Stratigraphy | | | | |-------------------------------------|---------------|--|--| | Period | Series | Formations | | | Guadalupian
(271-260 mya) | White Horse | Tansil
Yates
Seven Rivers
Queen
Grayburg | | | | Ward | San Andreas
Glorietta | | | Leonardian
(280 -271 mya) | Yeso | Paddock
Blinebry
Tubb
Drinkard | | | | Abo | | | | Wolfcampian
(299-280 mya) | Wolfcamp | | | | Pennsylvanian
(323-299 mya) | Pennsylvanian | | | | Period | Series | Formations | | |--------------------------------|------------------------|--|--| | Guadalupian
(271-260 mya) | White Horse | Yansil
Yates
Seven Rivers
Queen
Grayburg | | | | Ward | San Andreas
Glorietta | | | Leonardian
(280-271 mya) | Clear Fork Upper Leona | | | | | Upper Spraberry | | | | | Lower Spraberry | | | | | Dean | | | | Wolfcampian
(299-280 mya) | Wolfcamp | | | | Pennsylvanian
(323-299 mya) | Penns | ylvanian | | #### Permian Basin "Sweet Sixteen" ### **BACKGROUND** #### Wolfcamp bench performance varies throughout basin © 2017 IHS Markit. All Rights Reserved. #### 20 Grids created across the Permian | | | | GDS | GEOLOGIC | AL COLUN | VIIN | | | _ | |-------------|--|--|---|---|--|---|--|---|-----------------| | D | SDS
DATA
BASE | SOUTHEAST
NEW MEXICO | DELAWA | RE BASIN | MIDLAND | BASIN | EASTERN
SHELF | GDS
DAT
BAS | ΓA | | 1784 | SCRES | NORTHWEST SHELF | DELAWARE BASIN | CENTRAL BASIN
PLATFORM | CENTRAL BASIN
PLATFORM | MIDLAND BASIN | EASTERN SHELF | semes | \$1978W | | ATER
MAY | RECENT
PLEISTOCENE | Alluvium 3 | Alluvium 3 | Alluvium | Alluvium 3 | Alluvium | Allurium | PLEISTOCENE | NAPY . | | ERT | PLICEME
TO
ECCEME | | | • Ogalalla | Ogalalla 🖊 | | | PLICENE
TO
ECCENE | TERT. | | CHETAGOUS | OULF | | | | | | | OULF | CHETACOUS | | ь | COMANCHEM | Trinity
MS OFFACION | Trinity BASE CRETACEOUS | Trinity BASE CRETACEOUS | Trinity
BASE CRETACEOUS | Trinity BASE CRETACEOUS | Trinity
BASE CRETACEOUS | COMMICIEM | | | MAS
K | LFTER | | | | | | | UPPER | SAC N | | TRASSA | UPER | | Santa Rosa | Dockum Group | Dockum Group | Dockum Group Dewey Lake | Dockum & | UPPER | Thasse | | | ОСНОА | musium Cas
Salado | tile Postun | Dewey Lake RUSTIER Salado | Dewey Lake mistan Salado | Mustien Salado | RUSTLER
Salado | осном | 1 | | | GROADE | YATES SEVEN RIVERS QUEEN | LAMAR BELL CANYON CHERRY CANYON BRUSHY CANYON | SOLIDAD TANSIL VATES SEVEN RIVERS QUEEN QUEEN GRAYBURG SAN ANDRES | SATINGED TANSIL VATES SEVEN RIVERS QUEEN QUAYBURG SAN ANDRES | TANSIL YATES SEVEN REVERS QUEEN GRAYBURG SAN ANDRES | SELEGIO TANSIL YATES SEVEN RIVERS QUEEN QUAYBURQ BAN ANDRES | CHONUR | | | PERMAN | LEONAND | SAN ANDRES FI MANGER TOP POROSITY OLONETA Clear fork | BONE SPRINGS LIME 151 SAND 2NO SAND | CLEARFORK TUBB | San Angelo Holl CLEARFORK | OLOPHITA LINER SPRACERY LOWER SPRACERY | SAN ANDRED
CLEARFORK | LEONARD | APPROVA | | | WOLFCAMP | ASO WOLFCAMP
XX Marker
Bass Three Brothers | 310 SAND
WOLFCAMP | WOLFCAMP A | WICHTA ALBANY WOLFCAMP | WOLFCAMP | WOLFCAMP
Base Coleman Ancidon
Base Doman
Noodle Crank
Base Saddle Crank | WOLFCAME | | | Consessor | CISCO
(Virgil)
CANYON
(Missour)
STRAWN
(Des Mones | CSCO
BOUGH C
CANTON
STRAINN | CANYON STRAWN | CANYON STRAWN | ONCO CANYON STAWN | COSCO NORTH | Noode Crark Base Seption Crark Base Seption Brichardige Gunstyre CANYON Base Palo Perio STRAWN Geon Lower Capps Caddo Odom | CISCO
(Migit)
CANYON
(Missouri)
STRAWN
Des Mones | Commence | | POMSY. | ATOKA
(Band)
MORROW
SPRINGER | ATORA Aloka Bark Morrow Lower Morrow | Aloka Sara
Morrow | ATOKA Morrow | ATOMA
Morrow | ATOMA Morrow | ATONA MARRIE FALLS | ATOKA
(flend)
MORROW
SPIRNOCK | Mens. | | MESSESSMAN | CHESTER
MERAMEC
OSAGE
NINDERHOOK | LOWER MISS BARNETT | LOWER MISS MARKETT | MARKETT LOWER MISS | COMER MISS BARNETT | MSS
LDWER MSS
WOODFORD | MISS DIME | CHESTER
MERAMEC
OSAGE
KINDERHOOK | NW COLORS STEEL | | DEIGNAM | MOOLE | | DEVONIAN | DEVOMAN | | | | NOOF
MOORE | ОЕМОНИИ | | Stumen | UP ROCAMA
LO RACAMA
ALEXAGRAM | SILURIAN
FUSSELMAN | SILIFIAN
FUSSELMAN | SILURAN
FUSSELMAN | SILURAN
FUSSELMAN | SILIMAN | FUSSELMAN } | UP MACARAM
LO MACARAM
ALEXAMONAM | SUUMAN | | огоомоми | CHCHRATAN
MO-LAWIDAN
CHAZYAN
CANADIAN | MONTOVA | MONTOYA
SANSON | MONTOVA
SIMPSON
McKee | MONTOVA SIMPSON Mc Ree Waddell Connell | MONTOYA
SIMPSON | MONTOVA
SMIRGON | CHCHATHR
MCHAWIGAN
CHAZYAN | окромоми | | 5 | GZARNAN | ELLEHBURGER | ELLEMBURGER CAMBRAN | ELLEMBURGER | ELLENBURGER | ELLEMBURGEN | ELLENBURGER | CZAROAN | | | CAMBRA | UPPER | A | GRANTE WASH | | | CAMBRIAN GRANITE WASH | CAMBRAN | Unta | CAMBINAS | | | | MECAMBIAN | MECAMBIRAN | PRECAMBRAN
CENTRAL BASIN | PHE:AMBRAN | PRECAMINAN | PTECAMBRIAN | | | | D | SDS
DATA
BASE | SOUTHEAST
NEW MEXICO | | RE BASIN | CENTRAL BASIN PLATFORM MIDLAN cel Data Services Inc | D BASIN | EASTERN SHELF EASTERN SHELF | GDS
DAT
BAS | A | #### **Wolfcamp Benches in 3D with Horizontal Wellbores** #### **CROSSPLOT ANALYTICS** ### "Sweet Sixteen" Well Liquid Production and Number # "Sweet Sixteen" Well Liquid Production # "Sweet Sixteen" Liquid Production per foot ### Horizontal Wellbore Lengths by Formation # "Sweet Sixteen" BOE Production per foot # Liquid Production per foot – go deep/big # Cum Liquid Curves out to 6 Months # "Final Four" Liquid Production per foot # "Final Four" Liquid Production per foot ### Permian Basin "Final Four" # Permian Basin "Final Four" – Penalty Weight by TVD/Fluid per foot ### Permian Basin "Final Four" # Delaware 2nd Bone Springs Sweetspot #### **MULTIVARIATE ANALYTICS** # **Outlier Analysis** # Predicted versus Measured 6-mo Liquid # Predicted versus Measured 6-mo Liquid # Optimization Plots for Production Predictors ### **FUTURE WORK** #### Wolfcamp Depositional Model - Midland Basin #### **ACKNOWLEDGEMENTS**