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Abstract 

The Lower Permian Wolfcamp deep-water basinal succession in the Midland Basin has recently become an important target for unconventional 

reservoirs. However, uncertainty remains for reservoir characterization of the Wolfcamp due to the complexity of lithofacies in this region. This study 

combines petrophysical observations from cores, thin sections, and scanning electron microscope cubes with chemostratigraphic data from X-ray 

fluorescence (XRF) and total organic matter content (TOC). Lithofacies investigation were made using 4 drilling cores from Counties Glasscock (180 ft), 

Sterling (110 ft), and Irion (80 ft and 60ft), Texas. Based on core analysis, microscopic observations and XRF data, four lithofacies were defined in the 

Glasscock core representing the Wolfcamp upper calcareous interval: (1) fusulinid bioclast packstone, (2) calcareous mudstone, (3) brecciated mudstone, 

and (4) laminated skeletal mudstone. While the Wolfcamp lower siliciclastic interval is reflected by 5 lithofacies identified in Sterling and Irion cores as 

(5) clean litharenite, (8) calcite cemented litharenite, (7) clay-coated litharenite, (8) siltstone, and (9) siliceous mudstone. The Wolfcamp succession 

reveals a complex diagenetic history, ranging from compaction, recrystallization, replacement, cementation, and dissolution. Primary pores are rarely 

preserved due to significant compaction showing concavo-convex grain contact and sedimentary rock fragments as pseudo matrix. Isopachous and blocky 

carbonate cements further occlude initial pore space, especially in the calcareous interval. However, chlorite coating in lithofacies 7 inhibits further quartz 

cementation of primary pore space, making it a potential reservoir target. Measured core plug porosity and permeability suggest moderate porosity up to 

10.2%, and very low permeability ranging from 0.001 to 0.197md. The highest porosity and permeability are reported in lithofacies1 and 7. Combining 

this result with XRF and TOC data, lithofacies 7 is expected to have the best reservoir quality since it is more organic-rich and laterally extensive across 

this region. Findings in this study demonstrate variations in lithofacies and complicated diagenesis in the Wolfcamp succession that controls reservoir 

quality. Future work will incorporate well log correlation for regional reservoir characterization across the Midland Basin. 
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Lithofacies, Diagenesis, and Reservoir Quality Evaluation of Wolfcamp 
Unconventional Succession in the Midland Basin, West Texas

Hualing Zhang, Xavier Janson, Li Liu, Ziyuan Wang

Bureau of Economic Geology, Jackson School of Geoscience, The University of Texas at Austin

Introduction

The Permian Basin of west Texas and southeast New Mexico is one of the world’s significant hydrocarbon-producing 
provinces, with mixed siliciclastic-carbonate reservoirs. Original estimation of oil in place regarding to conventional 
sandstone reservoirs was more than 10 B bbl (Tyler and others, 1984). But with the recent advance in geological under-
standing and technology, the unconventional reservoirs have become an important target for petroleum exploration.

In the Midland Basin, the Wolfcampian succession was deposited in a deep-marine environment. The Wolfcamp basinal 
sequences consists of complex subaqueous density-flow deposits alternating with more organic matter-rich hemipelagic 
sediments. Lithofacies composition change rapidly within meter scale and shows great lateral heterogeneity (Hamlin 
and Baumgardner, 2012). Thus there is still a significant amount of uncertainty in terms of the integrated description of 
lithofacies heterogeneity.

Geological Setting and Study Area
The Permian Basin region is a complexly deformed segment of the late Paleozoic Marathon-Ouachita foreland bordering 
the southern margin of the North American Craton. Deformation caused by plate convergence and continental suturing 
between Gondwana and Laurasia ended diachronously in the Late Pennsylvanian in the Ouachita Mountains, and Early 
Permian in the Marathon region (Poole et al., 2005). During the Wolfcampian, the Midland Basin is relative deep water 

Map of the Permian Basin area with major basin structures (From Qilong et. al, in review).

Stratigraphic and operational names of formations in the 
Midland Basin (Modified from Baumgardner et. al, 2016).

Methods

This study combined petrographic observations from cores, thin sections, and scanning electron microscope cubes with che-
mostratigraphic data from X-ray Fluorescence (XRF), X-ray Diffraction (XRD) and total organic matter content (TOC) in order to 
provide an integrated characterization for the Wolfcamp succession. 

The SEM samples were cut into around 9mm3 cubes, and milled by Argon-Ion Miller. The milling process was conducted by Leica 
EM TIC020 Triple Ion Beam Miller under current of 2.8 mA and 8KV accelerating voltage for 2-3 hours at BEG CRC.

High-resolution energy dispersive XRF data were generated by a Bruker Tracer III (T3S2270) for major elements and a Bruker 
Tracer IV (T4S2602) for trace elements.

Results --- Lithofacies

The study area is located at the nose of 
the Eastern Shelf of the Midland Basin 
in Glasscock, Sterling, and Irion 
Counties, Texas. 
Four drilling cores that cored a portion
of the Wolfcampian succession were 
studied. 

FEI Nova NanoSEM 430 for SEM cube observationBruker Tracer III for XRF data collection

Petrographic observations show that upper Wolfcamp (Wolfcamp B) is more calcareous, dominating by calcareous mudstone 
with carbonate rock intervals, while lower Wolfcamp (Wolfcamp C) is a more siliciclastic interval, which is dominated by medium-
fine-grained turbidity sandstone, siltstone with interbedded siliceous mudstone. In total, nine lithofacies and facies associations 
were defined.

Wolfcamp B Examples

Fusulinid bioclastic packstone Calcareous mudstone Brecciated mudstone Laminated calcareous mudstone

Fusulinid bioclast packstone Calcareous mudstone Brecciated mudstone Laminated calcareous mudstone

Wolfcamp C Examples

Four lithofacies were defined in the Glasscock core representing the upper Wolfcamp calcareous interval: (1) fusulinid bioclastic packstone, (2) cal-
careous mudstone, (3) brecciated mudstone, and (4) laminated calcareous mudstone. 

Calcareous mudstone under SEM/ EDS

Organic Matter Highly compacted with evidence in clay mineral directional alignment
and the shape of pyrite

EDS shows dolomite with pyrite 
overgrowth

Wolfcamp C interval is dominated with sandstone with interbedded siltstone/mudstone. Incomplete Bouma sequence is commonly observed.

Incomplete Bouma sequence Siltstone with soft sediment deformationMassive fine-medium grain sandstone
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Redox Organic Matter

Dolometic argillaceous calcareous mudstoneDolomitic calcareous mudstone Siliceous calcareous mudstoneCalcareous mudstone Argillaceous calcareous mudstone Bioclast packstone-rudstone

Lower Wolfcamp siliciclastic interval is reflected by 5 lithofacies and facies associations identified in Sterling and Irion cores 
as: (5) clean litharenite, (8) calcite cemented litharenite, (7) clay-coated litharenite, (8) siltstone, and (9) siliceous mudstone. 

Th PPM
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Calcite cemented litharenite

 100μm

 400μm  100μm
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Clay-coated litharenite

Siltstone Siliceous mudstone

Clean litharenite

Litharenite with mudclast

 400μm

Siliceous mudstone under SEM/ EDS

Results --- Mineral contents and TOC

Wolfcamp C (Noekle #38 core)

Average Weight Percent
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Wolfcamp B (Hardwood Trust #2 core)

Data= 30 XRD samples from calcareous mudstone 
* F=Feldspar; P= Pyrite; S= Siderite

Data= 20 XRD samples from siliceous mudstone 
* F=Feldspar; P= Pyrite; S= Siderite

Results --- Mudstone Facies Associations Stacking from XRF
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Wolfcamp B (Hardwood Trust #2 core)

Wolfcamp C (Noekle #38 core)
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Results --- Diagenesis Results --- Generalized Paragenesis

Conclusion
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Results --- Pore System and Reservoir Quality

20 core plugs in total
Average porosity= 7.6%

Average permeability= 0.1 md

27 core plus in total
Average porosity= 8.2%

Average permeability= 0.1 md

Intragranular pores within the fusulinid

Minor intergranular pores No organic pore

Diagenetic Phase Early Burial Late Burial
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Dissolution pores Isopachous calcite (red circle) followed by blocky 
calcite precipitation in fusulinid 

bioclastic packstone

Calcite cement in brecciated mudstone

Sandstone Diagenesis 
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Dissolution in clean litharenite

Pyrite cement in siltstone

Quartz overgrowth and calcite cementation 
in litharenite

Siltstone/ Mudstone Diagenesis 
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Clay coating is a mixture of chlorite and illite

Calcite cement filled in intraparticle pores

Dolomite cement filling micro-pores
in fusulinid bioclastic packstone

Siliceous Mudstone  

Packstone/ Calcareous Mudstone  

Litharenite Porosity-Permeability Test Result 

Based on the integration of petrographic observation and geochemical data analysis, 4 lithofacies and 5 mud-
stone facies associations were defined in the upper Wolfcamp (Wolfcamp B) calcareous interval. The lower Wolf-
camp (Wolfcamp C) siliciclastic interval is reflected by 5 lithofacies with litharenite facies associations and 4 
mudstone facies associations. The Wolfcamp succession reveals a complex diagenetic history, ranging from 
compaction, pyrite, calcite, dolomite and silica cementation, to dissolution. 

Primary pores in litharenite and packstone are rarely preserved due to significant compaction and later cemen-
tation. However, chlorite-illite-coated litharenite inhibits further quartz cementation of primary pore space, 
making it a potential reservoir target. Also, the secondary porosity created by dissolution in both intervals is of 
great importance of Wolfcamp reservoir potential. The mudstone facies show mostly intergranular porosity be-
tween clay minerals, but organic pores are rare.

Measured core plug porosity and permeability suggest moderate porosity up to 11.6%, and low permeability 
ranging from 0.001 to 0.300 md. The highest porosity and permeability are reported in clay-coated litharenite. 

The Wolfcamp mudrock succession is fairly organic rich. The average TOC is higher in the calcareous interval 
with an average of 1.7 % comparing to the siliciclastic interval at 1.3%. This is probably due to the influence by 
detrital sediment influx from the eastern shelf during Early Wolfcampian (Hamlin and Baumgardner, 2016). 

Sedimentation in the Wolfcamp succession is highly controlled by density-flow current, probably turbidity flow. 
The turbidity current brings both calcareous and siliciclastic sediments from the Eastern Shelf as sea level 
changes. This increases the lithology heterogeneity thus increases heterogeneity in reservoir quality. 

Clay-coated litharenite is considered to have the best reservoir potential since it shows good porosity and per-
meability value, and is regionally continuous. It is usually present at the base of incomplete Bouma sequence 
identified in cores.  

We are grateful to State of Texas Advanced Oil and Gas Resource Recovery (STARR) project 30 for funding this research. And we appreciate the Bureau of Economic Ge-
ology, Jackson School of Geoscience at the University of Texas at Austin for providing the cores and facilities to complete the research.  
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Intergranular pores and intragranular pores 
Intragranular pores are concentrated in clay minerals

Organic pores are rare
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