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Abstract

Neal Hot Springs is a Basin-and-Range style geothermal system located 20 km northwest of the Known Geothermal Resource
Area at Vale, Oregon. Prior to commercial production and modest pressure drawdown, natural hot springs discharged small
volumes of 90°C, neutral pH, chloride water to form opaline sinter near the southward termination of the NNW-striking, W-
dipping Neal Fault Zone (NFZ). Brecciated and silicified Miocene volcanic rocks occur along the NFZ surface trace and down
dip where they comprise the bulk of the productive reservoir. Production zones occur in fractured andesite to basaltic andesite
lavas exhibiting increasing intensity of silica-chlorite-pyrite alteration with proximity to the NFZ. Aside from leakage along the
NFZ, the reservoir is generally capped by moderate depth, rhyolite tuff characterized by moderate to intense clay-calcite-pyrite
alteration. Miocene volcanic rocks are underlain by Jurassic granodiorite at depths >2100 m below surface and at temperatures
>150°C. U.S. Geothermal Inc. acquired and began exploration of the property based on chalcedony geothermometry of surface
discharges indicating a resource temperature >145°C and on historic drill intersections indicating high permeability. A simple
structural model developed from surface mapping in conjunction with shallow and moderate depth (150-600m) temperature
gradient drilling guided the targeting of permeability controlled by the NFZ. Production well NHS-1 was highly successful with
flow testing confirming a 141°C reservoir with permeability-thickness >300 darcy-meters. Follow-up drilling resulted in
completion of six additional wells into the NFZ. Four production wells intersect the NFZ at depths 700 m to 1100 m below
surface and feed 715 kg/s of 141°C brine to an air-cooled, binary power plant that produces up to a maximum of 30 MW (net).
Injection is primarily into wells that intersect the NFZ downdip and along strike from production zones at depths 1520 m to
1890 m below surface. Based on long-term flow test and model simulation results, much of the brine is required to be injected
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into the NFZ to provide long-term pressure support. Tracer testing showed that moderate depth wells along strike and in the
hanging wall returned large percentages of injected tracer mass relatively rapidly to production wells, whereas deep, downdip
wells returned only a few percent of tracer mass relatively slowly. Tracer test results were confirmed when rapid cooling at plant
startup was quickly remedied with shut-in of the moderate depth injection wells. Currently, the field continues to produce 715
kg/s of 141°C brine with production capped at 30 MW owing to limits of the air-cooled plant equipment and also by the
electricity sales contract. Notably, there has been no further temperature decline, something that is typically linear with time in
Basin-and-Range-type systems.
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Forward Looking Statements

This presentation contains certain “forward-looking statements”
within the meaning of the Private Securities Litigation Reform Act of
1995. All statements other than statements of historical fact are
forward-looking statements, which reflect the company’s current
expectations and beliefs regarding its future results of operations,
performance and achievements. These statements are subject to risks
and uncertainties and are based upon assumptions and beliefs that may
or may not materialize. Forward-looking statements may be identified
by words such as “will”, “could”, “prospects”, “"potential”, “planned”,
“expected”, “estimates”, "schedule", "anticipates" and similar terms.

These forward-looking statements include, but are not limited to,
statements concerning the company’s strategy; operating forecasts;
capacity, financing and construction of new projects or expansions of
existing projects; working capital requirements and availability;
illustrative plant economics; and the use of share price value projections.
Forward-looking statements are not guarantees of future performance
and are subject to various risks and uncertainties that could cause the
company’s actual results and outcomes to differ materially from those
discussed or anticipated, including the factors set forth in the section
entitled “Risk Factors” included in the company’s Annual Report on Form
10-K for the year ended December 31, 2013 and its other filings with the

Securities and Exchange Commission.

The company does not assume the obligation to update any forward-
looking statement.



Western USA
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USGS favorability and
identified hydrothermal
systems-faults, TG, volcanic
vents, seismicity...

Lots of potential but
challenging to discover and
prove

Not many large new
installations outside of the
Geysers and Salton Sea

Geothermal is a very small
piece of the USA power mix
and is often left out of
countrywide renewables
discussions
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Geothermal Systems and Geologic Setting

Characterizing the geologic setting of a
geothermal system can be an
important interpretive tool in evaluating
geothermal resources, but it is
important to remember the diversity of
characteristics.

From Reed (1983)
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Structural Settings of Geothermal
Systems In the Great Basin

@ Step-Over or Relay Ramp Horse-Tailing Fault 5

Hard Linkage Termination

eDeeply penetrating normal
faults

eOriented favorably with respect

to modern stress field
oSlip-tendency analysis
eDilation-tendency analysis

Accommodation Zone Dilational Fault 1

eInteraction of multiple fault overapping Opposing |(8) intarsection
strands to enhance dilatancy

eHydrothermal alteration

ePast
ePresent and ongoing

Faulds et al. 2011
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Geophysical Exploration
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Neal Hot Springs Structural Setting

eInitial field evaluation identified
hydrothermally altered fault zone
associated with hot springs

¢320F subsurface temperature
suggested by silica geothermometry
of hot spring discharges

eHigh permeability fracture zones
known from 80s era drilling by
Chevron

eSurface mapping, well logging, and
whole-rock geochemistry to refine
stratigraphy and structure
(Edwards, 2013)

eGeophysics inversion guided by
evolving geologic understanding
(Cowell, 2013; BSU Field Camp)
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After decades of refining and developing geothermal exploration techniques, TG drilling
IS still the best tool to explore for temperature and permeability




Neal Long-term Flow test

eNHS-1, 2, and 8 flow for 35 days
eInjection into NHS-6 and NHS-10

eMonitor temperature and pressure at multiple wells

View to north-northwest

Neal Hot Springs
Plant, Wells, Pipelines 2013

View to east-northeast
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Neal Hot Springs Reservoir Model

eNumerical model developed with ) )
TETRAD and converted to TOUGH?2. ' |

eSimple fracture geometry. Limited e l
materials (limited variation in properties, (
e.g., porosity, permeability)

eMass input at bottom of fracture.
Outflow to the WSW




eParameters adjusted

Neal Model
History Match

eNatural state simulated for 100,000s yrs

eMatch measured, pre-production temperatures

Neal Hot Springs Natural State Model Neal Hot Springs Natural State Model Neal Hot Springs Natural State Model Neal Hot Springs Natural State Model
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Simulation of long-term flow test

Neal Hot Springs Long Term Flow Test
Downhole Pressure at Well NHS-8
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Measured and simulated downhole pressure in well NHS-8.

Neal Hot Springs Long Term Flow Test
Downhole Pressure at Well NHS-6
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Measured and simulated downhole pressure in well NHS-6.

Geothermal Science, Inc. May 28, 2013
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Neal Hot Springs Long Term Flow Test
Downhole Pressure at Well NHS-1
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Measured and simulated downhole pressure in well NHS-1.

Neal Hot Springs Long Term Flow Test
Downhole Pressure at Well NHS-2
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Measured and simulated downhole pressure in well NHS-2.

Geothermal Science, Inc. May 28, 2013
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Despite a good natural state
match and successful
simulation of the long-term
flow test, the model has to be
reassessed based on tracer
test results.
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Neal Reservoir Model 2.0

ePermeability modifications e i
eFracture geometry modifications ( j W fmf ﬁ

‘ |/\\
eQutflows north and south along the fracture i e




Neal Model 2.0- Good natural state match
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Neal Model 2.0
Tracer Simulation
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Neal Hot Springs Production Data
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Geothermal brine pathway through the

binary power plant
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Vaporizers
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Air-Cooled Condenser

AC-X200A AC-X200B, C, D AC-X200E AC-X200F AC-X200G, H, I AC-X200J

Not Shown E ) Not Shown
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