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Economic
Development of MOW
Growing demand for resources (energy demand + 50%)
Leveling of the playing field (U.S. out-of-wack by factor of 4)
Greater regulation, globalization of people, goods, ideas, capital

Energy
Fossil fuels are most common (80%), most reliable, cheapest form of energy
Once in place, the energy system changes slowly

Environmental
Growing environmental impacts (“The only humans who don’t pollute ...”)
Push to reduce human influences on climate (GHG emissions)

Technology Progress
Energy: Abundant, Affordable, Available, Reliable, Clean
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Contexts to 2050

e Demographic
— Growing population
— “Older” Developed World, “Younger” Developing World
— Urbanization



Demography is destiny

Population Age pyramids

Growth Global Western Europe

10000

106+ Female B.0% 0.0% Male 106+ Female 0.0% 0.0% Male
9599 0.0% 0.0% 5.9 0.1% | 0.0
054 018 01N $54 osx Joaw
5[”:":' BS-89 o.5% sz BS-89 iF i [T
5084 o fJoax 50-84 L% 1%
75-79 EES . 75-79 L l 186
70-74 L% 1 70-74 2ax . :
[t L8% [t zi% . .~
B0-64 108 B0-64 L =.n|
2000 55-59 am 55-59 1 35
054 7% 054 18 I
43-49 % 43-49 0% I :
<044 EE - 1% .
35.39 EE I 35.39 10 I < 2015
1000 10-34 3% — 10-34 1% . ;
7570 am I - - 7570 1% . -
20-24 4 | [EH 20-24 2.8 | ]
15-19 198 I - 15-19 % . -
34 i - e e B

500

¥
-3
g
#1
¥
g
¥
B
B
3
¥
¥
-3
24
&
¥
g
¥

o-
Y
E b
l_.
M
-
R
LRSS

Morthern America
200

100+ Female Male 106+ Female 0% o Male
95-99 95-99 LU (5
$0-54. $0-54. 1 WMo
100 55-83 55-83 2% 1.7%
5084 50-54 L ia ax
75-79 7579 285 25%
70-74 70-74 2 B : o
[t [t 3% | B
5':' B0-64 1% 6054 1 = L%
5559 2 55-59 EX 1%
054 e 054 2% .
43-49 L% 3% 43-49 Fr N 2050
- 10w EE - EE . :
3539 3% I : 3539 am . :
2 D 1034 EE] 15% 1034 2.7% . :
5-20 1 | B3 75-20 2" I -
20-14 13 1m 20-14 8 . :
15-19 1% 3.5% 15-19 2% . : -
10 10-14 348 T : 10-14 4% . :
50 5% 388 50 2% -a.'m
1950 1960 1970 1930 1990 2000 2010 20200 2030 2040 2050 °“f—m——% = o i 2

-3
g
&
B
2
¥
¥
¥
1
g
&
¥
g
¥
&
2
¥
¥



Rapid urbanization
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Contexts to 2050

e Demographic
— Growing population
— “Older” Developed World, “Younger” Developing World
— Urbanization
e Economic
— Development of MOW
— Growing demand for resources (energy demand + 50%)
— Leveling of the playing field (US out-of-wack by factor of 4)
— Greater regulation, globalization of people, goods, ideas, capital



Energy Use vs. GDP, both per capita (1980-2010)
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Energy demand is rising
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Contexts to 2050

e Demographic
— Growing population
— “Older” Developed World, “Younger” Developing World
— Urbanization
* Economic
— Development of MOW
— Growing demand for resources (energy demand + 50%)
— Leveling of the playing field (US out-of-wack by factor of 4)
— Greater regulation, globalization of people, goods, ideas, capital
* Energy
— Fossil fuels are most common (80%), most reliable, cheapest form of energy
— Once in place, the energy system changes slowly



Energy supply has changed on decadal scales
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Contexts to 2050

Demographic
— Growing population
— “Older” Developed World, “Younger” Developing World
— Urbanization
Economic
— Development of MOW
— Growing demand for resources (energy demand + 50%)
— Leveling of the playing field (US out-of-wack by factor of 4)
— Greater regulation, globalization of people, goods, ideas, capital
Energy
— Fossil fuels are most common (80%), most reliable, cheapest form of energy
— Once in place, the energy system changes slowly
Environmental
— Growing environmental impacts (“The only humans who don’t pollute ...”)
— Push to reduce human influences on climate (GHG emissions)



Half of the carbon we emit
stays in the atmosphere for centuries
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The long CO, lifetime is highly
problematic
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Carbon constraints are severe
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Greenhouse ga emissions (GtC0,eq/yr GWP-100 AR4)

And we’re not making much progress
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Contexts to 2050

Demographic
— Growing population
— “Older” Developed World, “Younger” Developing World
— Urbanization
Economic
— Development of MOW
— Growing demand for resources (energy demand + 50%)
— Leveling of the playing field (US out-of-wack by factor of 4)
— Greater regulation, globalization of people, goods, ideas, capital
Energy
— Fossil fuels are most common (80%), most reliable, cheapest form of energy
— Once in place, the energy system changes slowly
Environmental
— Growing environmental impacts (“The only humans who don’t pollute ...”)
— Push to reduce human influences on climate (GHG emissions)
Technology progress

Energy: Abundant, Affordable, Available, Reliable, Clean



FOUNDATIONAL TECHNOLOGIES TO
WATCH



Molecular/materials design

Raw molecules

|I'!t.'ﬂl'-I'I'Il‘.:liﬂlf:l.lhlil
interaction  Regularly arranged molecules
Ordered molecular orientation

Substrate (metals, semiconductors, ceramics, polymers, etc.)

https://newscenter.berkeley.edu/2012/02/09/breakthrough-in-designing-cheaper-more-efficient-catalysts-for-fuel-cells/



Additive manufacturing

http://www.laserfocusworld.com/articles/print/volume-50/issue-08/features/lasers-for-3d-printing-additive-manufacturing-with-nir-lasers-forms-micro-sized-parts.html



BIO technologies



Sequencing costs have come down

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

il —
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Biomolecular structure/function

Motivating Example: Large-scale Simulation of Ion Channels

Voltage-gated 1on channels. or Kv channels. are mvolved in the generation and spread of electrical signals
mn neurons. muscle, and other excitable cells. In order to open the gate of a channel. the electric field across
the cellular membrane acts on specific charged amino acids that are strategically placed in the protein ina
region called the voltage sensor. In humans, malfunction of these proteins. sometimes owing to the
misbehavior of only a few atoms, can result in nevrological diseases. A wealth of experimental data exists
from a wide range of approaches. but its interpretation 15 complex. One must ultimately be able to
visualize atom-by-atom how these tiny mechanical devices move and change their shape as a function of
time while they perform. Researchers are using a tight mtegration of experiment, modeling, and simulation
to gain insights mto Kv channels. Their studies serve as a roadmap for sumulating, visualizing, and
elucidating the inner workings of these nanoscale molecular machines. Because these channels are
functional electromechanical devices. they could be used in the design of artificial switches in varnous
nanotechnologies. The practical applications of this work are significant. For example. the research in 1on
channel mechanisms may help identify strategies for treating cardiovascular disorders such as long-QT
syndrome, which cauvses irregular heart rhythms and 1is associated with more than 3,000 sudden deaths each
vear in children and young adults in the United States. Moreover. the studies may help researchers find a
way to switch or block the action of toxins — such as those emitted by scorpions and bees — that plug the
1on channel pores m humans.

Figure 9: Complete model of the Kv1.2 channel assembled using the Rosetta method. The atomic model
comprises 1,560 amino acids, 645 lipid molecules, 80,850 water molecules and ~300K+ and Cl- 10n pairs.
In total, there are more than 350,000 atoms in the system. The simulations were generated by using
NAMD on the Cray X-T (Jaguar) at Oak Ridge National Laboratory and the Blue Gene/P at Argonne
National Laboratory. Image courtesy of Benoit Roux. Argonne National Laboratory and University of
Chicago
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We can do amazing things with plants

A By hrd-D

9 DOD

10 DOD
+ recovery

12 DOD
+ recovery

300 mMNaCI '

Stress tolerance/resistance by overexpression of HRD in Arabidopsis. (A) Drought-resistance tests of Arabidopsis WT and the hrd-D mutant
line, treated for 9—12 days without water. The first row is at 9 days of dehydration (DOD), followed by plants treated for 11 and 12 DOD
that were subsequently watered to reveal surviving plants. (B) Mutant hrd-D and WT Arabidopsis treated at 300 mM NaCl concentrations,

showing bleached/dead plants and surviving hrd-D plants.

http://www.pnas.org/content/104/39/15270/F3.expansion.html|



INFO technologies



Top 500 computer systems
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Multi-scale Theory and Computation — “Battery Computer Simulator”

N4
%\ ATOMISTIC MESO-SCALE CONTINUUM
O
o (LW Finite Element
A= Method
O
lon Diffusion in N
.. v W Phase Field Thermochemical
Li-air battery = 2 Calculations
electrolyte =

Kinetic
Monte Carl¢Dislocation
Dynamics

mmg Molecular Velocity field

.Dynamics and heat profile
Density in an air-cooled
Functional battery (FEM)

Theor

m

) Graphite/Li,CO,/electrolyte
| interface (MD)

Li-peroxide nanoparticle

(DFT) .



& Drilling
Technology
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Energy technologies



Fission

e Existing
— LWR life extension (materials)

— Waste management (science + politics; Yucca)

e New
— S7 gas constraint
— Small modular reactors

— Advanced designs (thorium,
HTGR, travelling wave, ...) all
guestionable

IRIS (Westinghouse)
335 MWe

mPower (Babcock & Wilcox)
125 MWe

NuScale (NuScale)
45 MWe




Tokomak - ITER

Fusion Energy Concepts

Field Reversed

Plasma Configuration Separatrix
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Inertial Confinement Fusion - NIF

THE NIF'S FUSION STRATEGY

As the NIF's laser beams hit the gold hohlraum capsule (1), they generate X-rays that blast the outer layer
of the pellet (2), compressing the hydrogen isotopes until they fuse (3).
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LDV electrification is incipient

Electric vehicles

The year 2015 saw the global threshold of 1 million electric cars® on the road exceeded, closing at
1.26 million. In 2014, anly about half of today's electric car stock existed. In 2005, electric cars were still

measured in hundreds. 2015 also saw more than 200 million electric two wheelers on the road,

and 170 000 buses, primarily in China.
Evolution of the global electric car stock, 2010-15
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Key peint: The uptake of electric cars has been growing since 2010, with a BEV uptake slightly ahead of PHEV uptake. 80%
of the electric cars on road worldwide are located in the United States, China, Japan, the Netherlands and Norway.

Fleet penetration of plug-ins
e <1% now

e <10% by 2030
e ~50% by 2050

2014 US§ per kKWh

Cost of Li-ion battery packs in battery electric vehicles
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