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Abstract 

 

One hundred fifty-eight samples of Ohio and Sunbury shale core and well cuttings, from 14 bore holes, were sampled along a 

north/northwest (NNW) to south/southeast (SSE) transect in eastern Kentucky. The transect essentially parallels regional dip, 

with the NNW end representing an area where the shale is relatively thin (<200 m) with minimal burial depth (0 to 600 m), and 

the SSE end representing an area where the shale is thicker (>200 m) and more deeply buried (600 to 1,400 m). Sample points 

from individual cores were selected to best represent the black shale interval at each core location. An additional 21 samples 

were collected from locations along the Ohio/Sunbury shale outcrop belt in northeastern Kentucky. All the samples were 

analyzed for total organic carbon content (TOC) and vitrinite reflectance (VRo). Selected samples were analyzed for solid 

bitumen reflectance (BRo), Rock Eval pyrolysis, and major, minor and trace element composition as determined from x-ray 

fluorescence (XRF). TOC values ranged from 0.23 % to 21.64 %, with core average TOC values being higher towards the 

NNW. Vitrinite reflectance values range from 0.5 - 0.6 % VRo random on the NNW end of the transect to 1.2 to 1.3 % on the 

SSE end. Solid bitumen reflectance measurements were collected on 21 samples and show a similar pattern, being lowest (0.3 to 

0.4 %, BRo random) on the NNW end of the transect, and highest (1.4 to 1.5 %, BRo random) on the SSE end. Rock Eval 

analyses performed on 64 samples, show a pattern of increasing Tmax from NNW (420 to 4300 C) to SSE (440 to 4600 C), and 

decreasing Hydrogen Indices (HI) from >500 at locations to the NNW, to <100 at the SSE end. Collectively, the petrographic 

and Rock Eval thermomaturation data all show an increase from the NNW end of the transect to the SSE end, which is the 
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direction of increasing shale thickness and present depth of burial. Major, minor and trace element concentrations, determined 

for 21 samples from the outcrop belt on the NNW end of the transect, indicate the Ohio/Sunbury shale to be dominated by SiO2 

(avg. 57.9 %) and Al2O3 (15.8 %). The shale samples are also enriched in several trace elements including Cr (avg. 179 ppm), 

Mo (avg. 241 ppm), Ni (avg. 197 ppm), V (avg. 1194 ppm), Zn (avg. 259 ppm), and Zr (avg. 263 ppm). Element ratios (e.g., 

Ni/Co, V/Cr and V/V+Ni), used to assess paleoredox conditions, indicate mainly dysoxic to anoxic conditions during sediment 

and organic matter accumulation. 
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The Berea SS is an 
upper Devonian 

“tight sand” 
(siltstone across 

much of KY)
§ Interfingers with 

the Bedford Shale

§ Overlain by the 
Sunbury Shale and 

underlain by the 
Ohio Shale 

(potential source 
rocks)
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*the Berea Sandstone, which overlies 
the Bedford Shale at more eastern

locations, is absent here

Interval ID TC TIC TOC TS VRo
Sunbury (top) 15.01 0.00 15.01 1.61 0.53
Sunbury (middle) 14.01 0.00 14.01 1.52 0.51
Sunbury (base) 14.54 0.00 14.54 1.56 0.51
Cleveland (top) 13.14 0.00 13.14 1.73 0.54
Cleveland (middle) 15.72 0.03 15.69 0.96 0.54
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Dispersed Organic Material
Organic components in petroleum shales are called “macerals”. 

Macerals are the organic equivalents of minerals in rocks.

Terrestrial Macerals Origin

Vitrinite Wood and wood-like tissues of land flora

Inertinite Oxidized tissues of land flora

Sporinite Spores and pollen of land flora

Open Water Macerals Origin

Alginite Algae
Lamalginite Laminar shape
Telalginite Polygonal (ovoid) shape

Bituminite Degraded algae, laminar to ovoid shape

Amorphinite Degraded algae, amorphous morphology

Solid Bitumen Secondary maceral, mobilized and re-solidified kerogen

Tasmanites / Leiosphaeridia Spores of prasinophyte algae
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VRo = measured vitrinite reflectance (oil immersion)
BRo = measured solid bitumen reflectance (oil immersion)
VR equivalent = (BRo measured * 0.618) + 0.4 (Jacob, 1989)

Thermomaturation – Organic Petrology
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Tmax (0C) = S2 peak
VR calculated = (Tmax * 0.018) – 7.16 [Jarvie et al., 2002]
HI = (S2 / TOC) * 100
Adjusted Tmax = Tmax + ((HI – 150) / 50) [Snowdon, 1995]
Production Index = S1 / (S1 + S2)

Thermomaturation – Rock Eval
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Paleoenvironmental Considerations

Average	Trace	Element	Abundances	in	the	Sunbury	and	Cleveland	Shales

TOC
Avg. 13.5 %
Max. 21.8 %
Min. 6.9 %
N = 20
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Summary - 1
Total Organic Carbon (TOC) –
samples varied between 0.3 and 
21.6 %. Well average TOC 
values are higher to the NW, and 
lower to the SE. In general:

Sunbury > L. Huron > 
Cleveland> U. Huron > M. Huron 
> 3 Lick

Total Sulfur Content (TS) -
samples varied between 0.6 and 
6.6 %. Pyrite is ubiquitous, and 
usually occurs as small 
framboids and isolated euhedral
crystals. In general:

L. Huron > M. Huron > U. Huron 
> Sunbury > Cleveland > 3 Lick

Solid
Bitumen

Solid
Bitumen



Organic Petrology – all of the samples 
are dominated by liptinite macerals of 
marine origin (primarily amorphinite, 
bituminite, alginite). Vitrinite and 
inertinite (terrestrial macerals) become 
more common in the Upper Huron 
through Sunbury. 

Vitrinite Reflectance – Well average VRo
values ranged from 0.51 %, in the NW 
part of the study area, to 1.24 % in the 
SE part.

Solid Bitumen Reflectance – BRo
ranged from 0.33 %, in the NW part of 
the study area, to 1.43 % in the SE part.

Rock Eval Pyrolysis – Thermomaturity
parameters increase NW – SE.

Summary - 2

Solid
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Solid
Bitumen



Summary - 3
HI – 585 to 42 mg / g TOC
Tmax - 420 to 445 C
VR calculated – 0.40 to 0.84 %
Production index (PI) - 0.03 to 0.44
Adjusted Tmax – 428 to 463 C
Adjusted VR calculated – 0.54 to 0.82 %

VRo and  VR equivalent (calculated from BRo
measurements) show close agreement

Thermomaturation indices from Rock 
Eval and petrographic methods are in 
general agreement after HI adjustments 
are made.

Although the NW portion of EKY appears 
to be immature to early mature based on 
VRo (measured and calculated) and Tmax, 
adjusted Tmax values place most of the 
area within the oil window. 
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Summary - 4
Several trace elements show significant  
correlation with TOC. Regression 
analysis indicates the following r-
values.

Cr/Al = 0.88 Cu/Al = 0.87
Co/Al = 0.84 Ni/Al = 0.82
Zr/Al = 0.75 Pb/Al = 0.74
V/Al = 0.71 Th/Al = 0.68
U/Al = 0.62 Zn/Al = 0.55
Y/Al = 0.46 Mo/Al = 0.44

Element ratios indicative of paleoredox
conditions are suggestive of deposition 
in mainly dysoxic to suboxic/anoxic 
conditions.

Element Ratio Avg.
Ni/Co 11.5
V/Cr 6.2
V/(V + Ni) 0.83

Solid
Bitumen

Solid
Bitumen
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