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Abstract 

 

The Green River Formation of the Uinta Basin is an Eocene lacustrine system comprised of carbonates, siliciclastics, and rich oil shales. Log 

evaluation is difficult, due to the formation's complex mineralogy and thin interbedded nature of diverse rock types. Historically, log 

correlations have used a zoned model, which excludes detail and suggests continuity that is misleading on a bed-by-bed basis. Methods to 

determine lithology at a finer scale by using advanced logging tools and stochastic models require specialized software, expert users, and can 

be cost prohibitive. However, a simple, deterministic model can be applied which utilizes widely available logging measurements: gamma ray, 

density, neutron porosity, and photoelectric effect. This four mineral solution gives an output of volume percent of quartz, calcite, dolomite, 

and mixed clay. To obtain these volume percentages, log-based calculations yield an apparent matrix density (RHOmaa) and an apparent 

photoelectric cross section (Umaa). These values are plotted on one of two mineral identification triangle plots: 1) quartz-calcite-dolomite; or 

2) quartz-calcite-clay. The triangle utilized is determined by the gamma ray value, with low gamma ray values (“cleaner” or less clay) using the 

first triangle and high gamma ray values (“shaley” or more clay) using the second. The quartz and clay triangle end points are considered 

“floating” and are adjusted using elemental analysis on the formation. These volume percentages are normalized to sum 1, and have been 

filtered for adverse logging conditions. The final result is similar to elemental analysis logging tools and is obtained at a lower cost utilizing 

commonly available software suites. The volume percentages allow for more detailed correlations that better convey this complex lithologic 

system and clearly show vertical variability and stratigraphic changes from littoral to profundal lake environments. Lithofacies clearly 

identified by the resulting volume percentages include clean carbonate beds and oil shales. High-feldspathic content rocks generally require a 

more mobile quartz end point, but result in the identification of thin siliciclastic beds. Calibration of lithology is accomplished by using gamma 

ray and XRF data derived from nearby analogous carbonate and siliciclastic outcrops, and wireline log suites tied to core. 
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Facies Association Description Facies EOD
1 Carbonate shoals Laterally extensive , sharp-based beds of carbonate wackestones 

to grainstones and coquina beds. Ve cally associated with 
microbial carbonates (FA3).  

Bioclast dominated limestone, nonskeletal limestone Li oral to subli oral

2 Microbial Carbonates Thinly laminated or massive limestones occurring due to microbial 
growth. Laterally extensive beds or discon nuous columns. In 
associa on with carbonate shoals (FA1) and can overlay delta 
(FA2) deposits. 

Microbial carbonates, nonskeletal limestone Li oral to subli oral

3 Calcareous mudstone Thinly laminated or massive lime mudstones occur as laterally 
extensive beds or discon nuous columns. Associated with 
carbonate shoals (FA1) and microbial carbonates (FA3). Encased 
by  laminated mudstones and siltstones (FA7) or oil shales (FA8, 
FA9, FA10).

Nonskeletal limestone Li oral to subli oral

4.1 Delta, mouth bar Grada onally based (wave-dominated) or sharp based ( vial-
dominated), laterally s sandstone bodies. Ve cally 
associated with  turbidite (FA11) deposits. Encased by li al to 
subli oral siliciclas cs (FA6) or laminated mudstones and 
siltstones (FA7). 

Wave-ripple cross-laminated, climbing ripple cross-
laminated, current-ripple cross-laminated, cross-stra ed, 
plane-parallel, laminated, structureless

Li oral to subli oral

4.2 Delta, channel Laterally discon nuous sandstones or heterolithic successions of 
interbedded mudstones and sandstones. Encased laterally by 
li oral and subli oral siliciclas cs (FA6) or laminated mudstones 
and siltstones (FA7).

Cross-stra ed, plane-parallel, laminated Li oral to subli oral

4.3 Delta, Turbidites Sharp based,  upward units. Associated with other delta 
deposits (FA2).

Cross-stra ed, current-ripple cross-laminated, climbing 
ripple cross-laminated, laminated, structureless

Li oral to subli oral

5 Li oral to subli oral 
siliciclas cs

Very- e sand-rich deposits from the proxima f areas 
with higher input. Ve cally associated with delta (FA2) deposits .

Climbing ripple cross-laminated, current-ripple cross-
laminated, wave-ripple cross-laminated, laminated, 
homogeneous

Li oral to subli oral

6 Laminated mudstones 
and siltstones

Mud and silt-rich deposits from the dista f areas with 
higher input. Ve cally associated with delta (FA2) and li oral to 
subli oral sandstones (FA6). 

Laminated, plane parallel, homogeneous Li oral to subli oral

7 Sandy oil shales Laminated silt-rich, kerogen-rich oil shale. Laterally and ve cally 
associated with carbonate shoals (FA1) and microbial carbonates 
(FA3). Occur basinward from li al to subli oral siliciclas cs 
(FA6) and pass laterally into laminated oil shales (FA9).

Laminated silt-rich oil shale, Illi c oil shale Li oral to subli oral

8 Laminated oil shale Laterally extensive units of rhythmically laminated oil shale 
deposits formed basinward from li al to subli oral facies 
associa ons (FA1 to FA8).

Finely laminated oil shale, Illi c oil shale, Wavy laminated oil 
shale

Profundal

9.1 Gravita onal oil shale: 
so sediment deformed 
oil shale

Laterally discon nuous deposits containing so sediment folds 
and overturned strata. Generally associated with oil shale breccias 
(FA10.2). 

So sediment disturbed oil shale, Wavy laminated oil shale Profundal

9.2 Gravita onal oil shale: oil 
shale breccias

Laterally discon nuous deposits of matrix supported breccia. 
Encased laterally and ve cally by laminated oil shales (FA9) and 
so sediment deformed oil shale deposits (FA10.1). 

Oil shale breccia Profundal

10 Silic  turbidites Normally graded or ungraded sandstone to siltstone units. 
Occurring basinward from delta (FA2) deposits. Ve cally 
associated with laminated oil shales (FA9). Locally, ve cally 
linked to so -sediment-deformed (FA10.1) oil shale deposits. 

Plane-parallel, laminated, structureless Profundal

11 Tu Structureless deposits of lithi ed volcanic ash. Encased by 
laminated oil shales (FA9) and locally overlain by gravita onal oil 
shales. Generally found in upper Green River Forma on.

Tu Other

Wind

Chemocline

Water level

Sublittoral Profundal

Littoral
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ABSTRACT

FACIES ASSOCIATIONS

MEASURED SECTION
The Green River Formation of the Uinta basin is an Eocene lacustrine system comprised of carbonates, siliciclastics, and rich 
oil shales. Log evaluation is difficult, due to the formation’s complex mineralogy and thin interbedded nature of diverse rock 
types. Historically, log correlations have used a zoned model, which excludes detail and suggests continuity that is            
misleading on a bed-by-bed basis.  Methods to determine lithology at a finer scale by using advanced logging tools and 
stochastic models require specialized software, expert users, and can be cost prohibitive. However, a simple, deterministic 
model can be applied which utilizes widely available logging measurements: gamma ray, density, neutron porosity, and 
photoelectric effect. This four mineral solution gives an output of volume percent of quartz, calcite,  dolomite, and mixed 
clay. To obtain these volume percentages, log-based calculations yield an apparent matrix density (RHOmaa) and an          
apparent photoelectric cross section (Umaa). These values are plotted on one of two mineral identification triangle plots:   
1) quartz-calcite-dolomite; or 2) quartz-calcite-clay. The triangle utilized is determined by the gamma ray value, with low 
gamma ray values (“cleaner” or less clay) using the first triangle and high gamma ray values (“shaley” or more clay) using the 
second.  The quartz and clay triangle end points are considered “floating” and are adjusted using elemental analysis on the 
formation.  These volume percentages are normalized to sum 1, and have been filtered for adverse  logging conditions.    
The final result is similar to elemental analysis logging tools and is obtained at a lower cost utilizing commonly available 
software suites. The volume percentages allow for more detailed  correlations that better convey this complex lithologic 
system and clearly show vertical variability and stratigraphic changes from littoral to profundal lake environments.         
Lithofacies clearly identified by the resulting volume percentages include clean carbonate beds and oil shales.         
High-feldspathic content rocks generally require a more mobile quartz end point, but result in the identification of thin      
siliciclastic beds. Calibration of lithology is accomplished by using gamma ray and XRF data derived from nearby analogous 
carbonate and siliciclastic outcrops, and wireline log suites tied to core. 
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The photoelectric index (PE) is a continuous measurement taken along 
with the density log. The values recorded are direct reflections of the 
rock’s aggregate atomic number, measured in barns per electron. 
This atomic number is indicative of the mineralogy. PE is less pore-volume 
effected than the density or neutron tool, and also has a finer vertical 
resolution than density or neutron tools. This is of interest when it is used 
with the neutron and density logs to calculate porosity and quantitatively 
resolve complex lithology of thin beds.   
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• Green River Foramtion contains fine interbeds of diverse lithologies
• RHOmaa-Umaa matrix identification plots yeild a finer scale lithology model at a

lower cost than advanced modeling methods
• Umaa values are highly sensitive to borehole conditions and washed out zones

must be eliminated
• It is necessary to “normalize” the data to some extent, so that calculations do not 

yield negative mineral volumes (using Doveton, 1994)
• Not all wells are the same and endpoints are not definite- X-ray Diffraction (XRD) 

clay analysis is necessary to set the mixed clay point and XRD bulk analysis or core 
is necessary to check the model’s accuracy

• Clay mineralogies change through the system, it is necessary to change the clay  
point as the proportions of clays change

• Abundant pyrite can skew end-points- pyrites high density and high photoelectric
factor values cause scatter outside of the defined triangle

• Dolomite is present throughout the section, so when shaley intervals are 
calculated the shale values will appear higher (as only three end-points can be 
calculated for at one time)

Reflected light image and a
backscatter image  
highlighting abundant pyrite 

• Perform XRD clay analysis to identify the clays in the Park Mountain Section
• Further SEM work to examine mineralogy with the EDS and automated 

mineralogy on thin sections to examine distribution of fine-grained lithologies
• Examine collected X-ray Florescence data to identify elemental trends, and use 

XRD and automated mineralogy to estimate minerals from elemental data 
• Incorporate and correlate more  wells, especially more basin-center wells
• High-grade tops to create a denser network of correlations
• Determine clay changes through the formation and create matrices to fit these 

changes 
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POSTER SUMMARY 
The Green River Formation of the Uinta basin is an Eocene lacustrine system comprised of carbonates, siliciclastics, and rich oil 
shales. Log evaluation is difficult, due to the formation’s complex mineralogy and thin interbedded nature of diverse rock types. 
Historically, log correlations have used a zoned model, which excludes detail and suggests continuity that is misleading on a bed-by-
bed basis.  Methods to determine lithology at a finer scale by using advanced logging tools and stochastic models require specialized 
software, expert users, and can be cost prohibitive. However, a simple, deterministic model can be applied which utilizes widely 
available logging measurements: gamma ray, density, neutron porosity, and photoelectric effect. This four-mineral solution gives an 
output of volume percent of quartz, calcite, dolomite, and mixed clay. To obtain these volume percentages, log-based calculations 
yield an apparent matrix density (RHOmaa) and an apparent photoelectric cross section (Umaa).  

 

 

𝑅ℎ𝑜𝑚𝑎𝑎 =
𝑅𝐻𝑂𝐵 − (𝑃ℎ𝑖𝑁𝐷𝑥𝑝𝑙𝑜𝑡 ∗ 𝑅𝐻𝑂𝑓𝑙𝑢𝑖𝑑)

1 − 𝑃ℎ𝑖𝑁𝐷𝑥𝑝𝑙𝑜𝑡
 

 

𝑈𝑚𝑎𝑎 =  
(𝑃𝑒 ∗ 𝑅𝐻𝑂𝐵) − (𝑃ℎ𝑖𝑁𝐷𝑥𝑝𝑙𝑜𝑡 ∗ 𝑈𝑓𝑙𝑖𝑢𝑑)

1 − 𝑃ℎ𝑖𝑁𝐷𝑥𝑝𝑙𝑜𝑡
 

 

𝑃ℎ𝑖𝑁𝐷𝑥𝑝𝑙𝑜𝑡 ≈  
𝑃ℎ𝑖𝑁 + 𝑃ℎ𝑖𝐷
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These values are plotted on one of two mineral identification triangle plots: 1) quartz-calcite-dolomite; or 2) quartz-calcite-clay. The 
triangle utilized is determined by the gamma ray value, with low gamma ray values (“cleaner” or less clay) using the first triangle and 
high gamma ray values (“shaley” or more clay) using the second.  The quartz and clay triangle end points are considered “floating” 
and are adjusted using elemental analysis on the formation.  These volume percentages are normalized to sum 1, and have been 
filtered for adverse logging conditions. The result is similar to elemental analysis logging tools and is obtained at a lower cost utilizing 
commonly available software suites.  
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The volume percentages allow for more detailed correlations that better convey this complex lithologic system and clearly show 
vertical variability and stratigraphic changes from littoral to profundal lake environments. Lithofacies clearly identified by the 
resulting volume percentages include clean calcite beds and sandstones. However, from outcrop and core analysis, there is often 
dolomite present in the presence of clays, but with the three-point system high clay rocks exclude dolomite. This problem causes 
clay volumes to appear higher when dolomite is excluded. High-feldspathic content rocks generally require a more mobile quartz 
end point, especially when pyrite or organic matter is present. Calibration of mineralogy end points is accomplished by using gamma 
ray and XRD data derived from wireline log suites tied to core as well as nearby outcrops. Further work to be completed includes 
XRD clay analysis on the Park Mountain Section, SEM and automated mineralogy to examine fine-grained lithologies, interpret 
collected XRF data to estimate minerals from elemental data, calculate and incorporate more well data, and high grade tops to 
create a denser network of correlations. 

boxed core interval on right 

 

castle peak 


