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Abstract

A sequence of ten fully-equipped experiments of continuous flows of sediment gravity flows (SGF) was conducted in a long-glass flume (15 x
0.4 x 0.6 m) in order to identify variations in their depositional and hydrodynamic behavior in function of increments in sediment concentration
and/or clay content. Mineral Coal (D50 = 55um, density = 1,190 kg/m?) Kaolin (D50 = 6 um, density = 2,600 kg/m?) mixtures were prepared to
constitute distinct SGF with volumetric concentrations ranging from 2 and 40% and clay contents of 5, 12.5, and 50%. The mixture volumes
were 200 and 400 liters, and the discharge varied from 50 to 60 I/min. Images of all simulated SGF were obtained using two video cameras and
two medical ultrasound scanner. Velocity and concentration data were also collected using, respectively, 24 UVP probes and 6 UHCM probes.
Results showed that significant changes occurred in the dynamics of flow as well as in the deposits generated as concentration/clay content
increases. Low concentration flows (Cv < 7.5%) were thicker; lower velocity, and turbulence keep sediments in suspension. In line, more
concentrated flows (CV > 10%), a bipartite flow stratification was observed. In the top layer, the predominant sediment-support mechanism
was turbulence. However, in the basal layer, mass transport became predominant (Cv > 20%). When the clay content was greater than 12.5%,
the formation of a mixed layer was fully inhibited. The Sediment-support mechanism also drives the depositional process: the sediment
transported by turbulent flows was deposited grain by grain as flow decelerates, whereas the mass transported sediment was deposited just after
an abrupt stop (injection stop), characterizing to a frictional (no clay) and/or cohesive freezing (with clay). The slicing analysis of the non-
cohesive flow deposits showed that the amount of material deposited (thickness) and the grain size decreasing along the channel. In addition,
increase in concentration provided greater flows competence, which can be identified by the larger sediment size in the most distal part of the
channel. The increase in clay content, in turn, reduced the flow capacity of transport causing the formation of thicker deposits. Rheological
aspects of these distinct flows can also explained the differences between SGF simulated. Finally, those new results can complement/better
conception previous experiment-derived classification models for submarine sediment gravity flows.
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HYDRODINAMICAL & DEPOSITIONAL PROCESS

Results showed that significant changes occurred in the dynamics of flow as well as in the deposits
generated as concentration/clay content increases. Low concentration flows (Cv < 7.5%) were thicker; lower
velocity, and turbulence keep sediments in suspension. More concentrated flows (CV > 10%), a bipartite flow
stratification was observed. In the top layer, the predominant sediment-support mechanism was turbulence.
However, in the basal layer, mass transport became predominant (Cv > 20%). When the clay content was
greater than 12.5%, the formation of a mixed layer was fully inhibited. The Sediment-support mechanism
also drives the depositional process: the sediment transported by turbulent flows was deposited grain-by-
grain as flow decelerates, whereas the mass transported sediment was deposited just after an abrupt stop
(injection stop), characterizing to a frictional (no clay) and/or cohesive freezing (with clay). Increase in
concentration provided greater flows competence, which can be identified by the larger sediment size in the
most distal part of the channel. The increase in clay content, in turn, reduced the flow capacity of transport
causing the formation of thicker deposits. Rheological aspects of these distinct flows can also explained the
differences between SGF simulated.
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