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Abstract 

The lacustrine Green River Formation is an important oil-producing formation in the Uinta Basin, Utah. Of particular interest for horizontal 

drilling are three beds with up to 100% dolomite in the Uteland Butte member (UBM) of the lower Green River Formation. These beds are 1.5 

to 8 feet in thickness and interbedded with organic-rich limestones and shales. They have up to 30% porosity but only max 0.1 mD 

permeability, thus forming an unconventional reservoir. However, not all dolomitized layers, of which there are several more in the UBM, are 

of reservoir quality. This study attempts to determine the role of dolomitization and other diagenetic processes in reservoir development, i.e., 

when and how were the abnormally high porosities paired with low permeabilities created. Furthermore, delineating the regional geometry of 

the dolomite layers is critical for the understanding the petroleum production potential. Methods of investigation include outcrop and core 

petrography, thin section microscopy, SEM, XRD, CL, and isotopic analyses. Deposition of the UBM took place during three transgressive-

regressive cycles that were driven by climate variations. The lake level was high during cooler and wetter periods that alternated with warmer 

and drier periods, which led to lower lake levels from reduced fluvial input and/or evaporation. The three reservoir layers were deposited 

during the first of these cycles as lime muds in lacustrine littoral to sublittoral environments as intraclastic, peloidal grainstones, and silty 

peloidal packstones, and in shallow littoral environments as peloidal, bioturbated mudstones and wackestones The dolomite-bearing layers are 

greenish to beige in hand specimen and outcrop. Crystal sizes are <15 µm and porosity is mainly intercrystal. There is no discernible 

relationship between dolomitization and depositional environments. Permeability is low due to irregular and commonly disconnected pore 

throats. In addition, post-dolomitization silicification commonly formed nodules and layers of length-slow chalcedony and equigranular quartz, 

as well as blocky ferroan calcite and equant to blocky calcite cement, which reduced secondary porosity and permeability. Dolomitization took 

place very early, i.e., almost syndepositionally, from lake water that was moderately evaporated and probably enriched in Mg during drier 

periods. Increased fresh water input during more humid climate periods stopped dolomitization and facilitated further deposition of lime mud 

layers that are now interbedded with the dolomitized beds. The origin of the microporosity - or lack thereof - is as yet undetermined. 
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Unconventional reservoirs 
 Estimated resources: 177 MMOB / 218 BCFG 
Depth: North: ~8200 ft (~2700 m) / South: ~5500 ft (~ 1700 m) 
Dolomite bed thickness: ~1.2 – 7.5 ft (~0.5 m – 2.5 m)  
BHT: 200°-140°F (90 – 60 °C)  

DOLOMITE RESERVOIR CHARACTERISTICS 
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OBJECTIVES 

1.Origin of the Uteland Butte member 

dolomites? 

2.Implications for reservoir geology? 
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METHODOLOGY 

 Core + well logs + Outcrops 

 Petrography, CL, SEM 

 XRD, EMP 

 Trace Elements 

 Conventional stable isotopes 

 Clumped isotopes 
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Interval of interest 

Colton Tongue Wasatch Tongue 

Colton Formation Wasatch Formation 

Generalized stratigraphic column for Uinta Basin 

Modified from Logan, S.K., et al (2016) 
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7024.5 7027 7029.5 ft FACIES 

Three basic rock types: 
Shale – Limestone – 
Dolostone 
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Facie 8. Ooid grainstone 
Subspherical, dolomitized, and partially dissolved ooids 

500 µm 
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Facie 7. Intraclastic packstone 
Poorly sorted, subangular, sand to gravel sized dolomitized  
intraclast, and molluscan shell fragments 

500 µm 
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Facie 5. Peloidal wackestones/packstone 
Microcrystalline dolomite matrix with abundant peloids and  
ostracods shell fragments 

500 µm 



DEPOSITIONAL ENVIRONMENTS 
S N 

Schematic profile of lake basin with lateral facies distribution 
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Facie 3. Mudstone 
Microcrystalline dolomite matrix with scarce ostracods shell 
fragments 

150 µm 
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CYCLICITY 

Numbers, colors of cycles, include cycles names in the section 
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TEXTURES 

Dolomite textural classification (Sibley & Gregg, 1987) 



TEXTURES 

5 µm 

SEM image of planar-e dolomite texture of PZ1’, well Nickerson. 
Porosity: 21% (data from image analysis software) 

Average crystal size= 2 μm 



SEM image of planar-s dolomite texture of PZ2, well Nickerson.  
Porosity: 18% (data from image analysis software)  

TEXTURES 

5 µm 

Average crystal size= 2.1 μm 



5 µm 

SEM image of nonplanar dolomite texture at the base of PZ1,  well 
Ute Tribal. Porosity: 14% (data from image analysis software) 

TEXTURES 

Average crystal size= 1.8 μm 
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TEXTURES Vs POROSITY 

High porosity values (data from image analysis software) are 
associated with planar-e to planner-s textures 

n=39 
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STOICHIOMETRY 
XRD / All wells 

%CaCO3 dolomite distribution suggests changes in lake water 
chemistry and/or variable degrees of recrystallization 
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%CaCO3 REGIONAL TREND 
EMP data / PZ1’ 

Ca:Mg ratio (data from EMP) exhibits a regional trend N – S 
regardless of depth (PZ1’) 
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%CaCO3 REGIONAL TREND  
XRD Data, all wells for PZ1’ 
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TEMPERATURE OF DOLOMITIZATION 

δ18O dolomite: -3.1 to -5.9  
δ18O lake water: -10? to -5?  
Calculated lake water temperature: 66 °to 88°F 

δ18O (VPDB) 

88 66 77 
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Stage 0: 
Nickerson Ute Tribal Petes Wash 

Fresh water input - humid climate - favored deposition of 
wackestones/floatstone with bivalves, gastropods, and ostracods 

T= 48°F (~9°C)  

DOLOMITIZATION DRIVEN BY CLIMATE CHANGE 
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Climate changes (high evaporation + reduced fresh water input) 
changed lake water chemistry that promoted replacement of 
micrite (matrix) by high calcium dolomite 

T= 66°F (~19°C)  
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Stage 1: 

DOLOMITIZATION DRIVEN BY CLIMATE CHANGE 



Higher evaporation favoured dolomite recrystallization (stage 1) 
and/or micrite replacement by calcium dolomite 
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Nickerson Ute Tribal Petes Wash 

Stage 2: 

DOLOMITIZATION DRIVEN BY CLIMATE CHANGE 



At highest temperature, dolomite recrystallization (stages 1-2) 
persisted developing nearly stoichiometric dolomite (top). 
This cycle was repeated several times 
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Dolomitization was driven by climate changes:  

Took place in cyclically warmer climates 

Enhanced evaporation 

Reduced fresh water input 

Shallower lake water levels 

Origin of the Uteland Butte member dolomites 
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Implications for reservoir geology 

 Dolomite planar-e and planar-s textures are slightly 

correlated with higher porosity values 

 Spatial distribution of dolomite textures? 

 Spatial distribution of %Ca vs Porosity? 

? 
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