">How to Train Your Fracture Network Simulation? 2-D to 3-D Fracture Network Detection and Forecasting in a
Carbonate Reservoir Analogue Using Multiple Point Statistics (MPS)*

Pierre-Olivier Bruna®, Nico Hardebol', Kevin Bisdom?, Julien Straubhaar®, Grégoire Mariethoz*, and Giovanni Bertotti*

Search and Discovery Article #42168 (2017)**
Posted December 26, 2017

* Adapted from poster presentation given at AAPG International Conference and Exhibition, London, England, October 15-18, 2017
**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

'Department of Geoscience and Engineering, Applied Geology section, TU Delft, 2628 CN, Delft, Netherlands (p.b.r.bruna@tudelft.nl)
*Shell Global Solutions International, 2288 GS Rijswijk, Netherlands

*Centre d’hydrogéologie et de géothermie (CHYN), Université de Neuchatel, CH-2000 Neuchatel, Switzerland

*Institute of Earth Surface Dynamics (IDYST) UNIL-Mouline, Geopolis, University of Lausanne, 1015 Lausanne, Switzerland

Abstract

Natural fractures have a strong impact on flow in carbonate reservoirs. Their subsurface distribution is often unknown due to their sub-seismic size and to
the scarcity of available well data. Therefore, the one of the way used to constrain the 3D architecture of fracture networks is to resort to outcrop
analogues. Outcrops represent a local close-up of the present-day multiscale state of deformation. Outcrop data can be used to calibrate mechanical and
fluid flow models to predict the impact of fractures on storage and flow. However, the geological complexity of outcrops requires simplifications to make
reservoir-scale fracture modelling possible. A common approach is to use outcrop fracture data to populate subsurface reservoirs through stochastic
discrete fracture network models. These models are generally based on limited amount of parameters implying a randomisation of the obtained
realisations. Alternatively, we used Multiple Point Statistics (MPS) method. We create series of theoretical training images (TI) with varying fracture
spacing, orientation, length and typology. The TIs were used in MPS process to build synthetic outcrop-scale models to demonstrate and quantify how
key features of the fracture network can be reproduced by the MPS method. We applied our method to the Jandaira carbonate Formation in the Potiguar
basin (NE Brazil), which is analogue for some offshore Brazil reservoirs. A structural analysis (type, orientation, abutment) of exposed fractures was
conducted both at the station scale (10 x 10 m) using a classical characterisation approach and at the outcrop scale (> 200 x 200 m) using
photogrammetry models acquired from a drone. Four separate pavements interpreted this way, were used as input data to predict the geometry of the
fracture network at reservoir scale (area > 10 km A planar 50 x 50 m synthetic TI representative of the complexity of the outcrop fracture pattern was
used to generate series of MPS models. These MPS fracture models were compared to the outcrop fracture interpretation to quantify the degree of
consistency. Ultimately, at the reservoir scale, one or more representative TIs per outcrop was created and simultaneously used during MPS runs. The
obtained models forecast the fracture distribution at the reservoir scale considering the local fracture variability in the Jandaira Formation. Our new
approach can be applied to obtain more realistic reservoir scale fracture network models.
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§ ; CONCLUSIONS
H
w § é We showed that Multiple Point Statistics is adapted to reproduce the complexity of natural fracture net-
E 3 works. The opportunity to consider multiple training images in a single realisation proposes an alternative
'& g i to the classical workflow used in fracture network simulations. The same method developed on outcrop
2 analogues can be transferable to sparse subsurface data in order to integrate non-stationarity in Naturally
l§ Fractured Reservoirs.
s While orientation, spacing and topology relationships are generally taken into account in the MPS process,
=) the fracture length is not taken into account in a fully satisfactory manner. Further developments will im-
% prove the quality of the generated network.
These “trained 2D fracture networks" can be either viaa c ination of 2D MPS si
in 3D or via a simple extrusion of fracture planes. When available, these models will offer a simple,

Ll Smooth boundaries | easy-to-use and efficient alternatives to classic DFN methods.
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