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Abstract

Tight-gas sand reservoirs are considered to be one of the major unconventional resources. Due to the strong heterogeneity, very low
permeability and advanced well designs with multiple hydraulic fractures; performance forecasting, characterization and optimum exploitation
of these resources become challenging with conventional modeling approaches. In this study, it is aimed to develop data-driven predictive
models for tight-gas sands and use them for probabilistic assessment of these resources. Data-driven models are based on artificial neural
networks that can complement the physics-driven modeling approach, namely numerical flow-simulation models.

Two different classes of data-driven models are trained and validated by using data from a numerical reservoir model for tight-gas sand
reservoirs: (1) a forward model to predict the horizontal-well performance, once the initial conditions, operational parameters,
reservoir/hydraulic-fracture characteristics are provided, and (2) an inverse model to estimate reservoir/hydraulic-fracture characteristics once
the initial conditions, operational parameters, observed horizontal-well performance characteristics are provided. The forward model is
validated with blind cases by estimating the 10-year horizontal-well performance (i.e., cumulative gas recovery) with an average error of 3.7%.
While the development of the inverse model was more challenging due to the inverse nature of the problem, reservoir and hydraulic-fracture
characteristics are estimated with an average error below 20%, reducing the uncertainty associated with these parameters significantly. A
graphical-user-interface application is developed that offers an opportunity to use the developed tools in a practical manner by visualizing
estimated performance for a given reservoir or obtaining estimates of certain reservoir and hydraulic-fracture parameters, within a fraction of a
second. Practicality of these models is also demonstrated with a case study for the Williams Fork Formation by assessing the performance of
various well designs and by incorporating known uncertainties through Monte Carlo simulation. P10, P50 and P90 estimates of the horizontal-
well performance and reservoir/hydraulic-fracture characteristics are quickly obtained within acceptable accuracy levels.
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INTRODUCTION/MOTIVATION



Introduction

; Major Tight Gas Plays, Lower 48 States
. . g ', (EIA 2010)
O Tight-gas sands: producible LA R i
natural gas from reservoirs B L N :
that have permeability values 1 “5_'::,;\@ st
, W sl
less than 0.1 md, which usually [ .. @ 7= © &=
occurs in sandstone formations [ "gj Ny =
O A major resource with an o i “f;_(
estimate of the
Tight Sands Tight Sands Horizontal well
o e . ingle-stage Multi-stage Multi-stage hydraulic
Orlglnal_gas_ln_place Of 71’981 hy:raz:icfra:ture hydraulicfrazture fra:turz
1950’s to 1990’s 1990’s to present 2000 to present

TCF worldwide (Dong 2012)

(Monk et al. 2011)

O A recovery design with
horizontal wells with multiple

hydraulic fractures is necessary
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Characterization of Tight-Gas Sands

O Strong heterogeneity — Pores with narrow capillaries — Very low
permeability in millidarcy to nanodarcy ranges

formation (e.g., Williams Fork)

b),

O Challenges in characterization and evaluation of dynamic and
static reservoir parameters from well logs, borehole or surface
microseismic surveys and core samples (Forsyth et al. 2011,
Bahrami et al. 2013, Moore et al. 2016)
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Performance Forecasting of Tight-Gas Sands

O Model-building process and quick evaluation of reservoir
performance are resource-demanding due to existence of horizontal

wells with multiple hydraulic fractures (Abacioglu et al. 2009)

O Advanced numerical models can cause excessive simulation times if

not trigger convergence problems or simulation failures

O These challenges become more significant while dealing with
uncertainties in parameters: Thousands of simulation runs are

needed for a probabilistic assessment
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Objectives (1/2): Data-Driven Screening Tools

1. A forward-looking performance forecasting tool

~

)

2. An inverse-looking reservoir characterization tool
4 )
= Forward problem | pjtia| Conditions
== == == |[nverse problem
- /
: \
- ~ | 4
Operational I . Well Performance
Parameters I Characteristics
N
N - I —=
~ ~ ‘ -
~ V <
4 )
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Hydraulic Fracture

Effectiveness
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Obijectives (2/2): Probabilistic Assessment

O It is aimed to structure an efficient workflow for probabilistic

assessment of tight-gas sands:

. k, md @
O By deﬁnlng the Minimum 0.05 0.08
distribution function and MostLikely| 007 0.11
Maximum 0.1 0.14
ranges of input parameters, Triangular Normal
. . Distribution
can be performed 100% 1
2 90% I
. 80% +
= o
o After simulating a large £ eow
T 50%
number of scenarios, the 2 ao% =
3 30% =
uncertainty range the oo
10% +
output parameters can be 0% *

quantified
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Data-Driven Modeling via Numerical Models

- Construct a representative

reservoir model

- Generate a representative set of

scenarios

- Run all scenarios, and create a
knowledge base with the results

- Train the data-driven model with
the knowledge base

- Validate the data-driven model
and use it as a predictive tool
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Data-Driven Modeling via Numerical Models

- Construct a representative

reservoir model

- Generate a representative set of

scenarios

- Run all scenarios, and create a
knowledge base with the results

- Train the data-driven model with
the knowledge base

- Validate the data-driven model
and use it as a predictive tool
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Data-Driven Modeling via Numerical Models

- Construct a representative

reservoir model

- Generate a representative set of n k, md Q
scenarios 1 0.05 0.095
2 0.075 0.013
- Run all scenarios, and create a 3 0.04 0.081
knowledge base with the results 4 0.06 0.089
- Train the data-driven model with | | |
the knowledge base 10,000 0.042 0.0125

- Validate the data-driven model
and use it as a predictive tool
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Data-Driven Modeling via Numerical Models

- Construct a representative Scenarios

reservoir model

- Generate a representative set of

scenarios

- Run all scenarios, and create a

knowledge base with the results

- Train the data-driven model with
the knowledge base

- Validate the data-driven model
and use it as a predictive tool Knowledge Base
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Data-Driven Modeling via Numerical Models

- Construct a representative
reservoir model Knowledge Base

- Generate a representative set of

scenarios

- Run all scenarios, and create a
knowledge base with the results Training

- Train the data-driven model with
the knowledge base

- Validate the data-driven model
and use it as a predictive tool
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Data-Driven Modeling via Numerical Models

- Construct a representative

reservoir model

- Generate a representative set of

scenarios

- Run all scenarios, and create a
knowledge base with the results

- Train the data-driven model with
the knowledge base

- Validate the data-driven model

and use it as a predictive tool
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Numerical Reservoir Model

O A tight-gas sand reservoir, with a horizontal well with multiple
hydraulic fractures:

—

Number of
grid blocks  Length L,
5 (LA
~\\\
Wellhead ™
N —\_23 Hydraulic
| > fractures
1 5 L £ ﬁ Ly
Horizontal
L M welbore.
5 (L,-L)/2
< /( ::( V‘i<( ::é:( :z: ( > < /(
¥ w2 Y By Cp Y
Length nt 0;,(7/ 6"0 0),<7/ oy 5 et
ﬂ Number of
. grid blocks 5
@ PennState ('/
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Representation of Production Performance

O After carefully investigating the possible use of various decline
curves such as the 2™ order exponential decline curve, the power
law loss-ratio rate decline curve, logarithmic decline curve with 4

parameters; Arps’ hyperbolic decline curve is selected:

a
1 + bt)°

T

O Coeftlicients a, b, and ¢ were used as the performance

characteristics for the tight-gas model

O Using these coeflicients provides the flexibility of obtaining the

performance characteristics at any desired time scale
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Input/Output Parameters

Parameter Minimum value Maximum value Unit

Initial conditions of the reservoir

Area (A=Ly X Ly) 40 2,000 acres
Reservoir temperature (7) 80 280 Fe
Initial reservoir pressure (p;) 1,000 8,000 psi

Reservoir characteristics
(Uncontrollable parameters related to reservoir and hydraulic fracture effectiveness)

Thickness (h) 50 400 ft
Permeability (k) 0.000001 0.1 md
Porosity (¢) 3 25 Y
Fracture length (L) 400 2,000 ft
Fracture permeability (k) 1,000 100,000 md
Fracture width (wy) 0.1 0.4 inches

Operational parameters
(Controllable parameters related to horizontal well and hydraulic fracture design)

Flowing bottom-hole pressure (p,,f) 14.7 0.5p;+14.7 psi
Number of fractures (n) 1 30
Horizontal wellbore length (Lp.,) 1,000 8,000 ft
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Forward Model Design

O A cascade-forward network, with scaled conjugate-gradient
backpropagation algorithm, 800 training cases
O 3 hidden layers, with 16-15-14 neurons, with functional links

e Training Set E Training Set
— — = Validation Set Validation Set
Testing Set Testing Set
== o« Average (Training, Testing and Validation) ® Average (Training, Testing and Validation)
1% T I— = —I 14%
I 1
10% ¥ 1 1 12% i 1
. i \ | | _ I |
S 9% ¥ A N 1 S 10% I I
b \ J o1 wJ I I
% 8% T 1 1 % 8% I |
S o 5 I '
z %% N -¥- z %% | 1
i -I' I
6% | 4% : :
5% F————————— I_' __I ———— 2%
0 20 40 60 80 100 1 2 3 4
Number of Hidden Neurons Number of Hidden Layers
@ Training Set B Training Set
— = = Validation Set Validation Set
Testing Set Testing Set
== o Average (Training, Testing and Validation) ® Average (Training, Testing and Validation)
8% N N »IotyD E--_-_--_-I
o0 1 1 | 9% + 1 1
° ] I l 8% I I I
5 ] | s °F | I
S 6%t 1 s
w N N = 1 o %3 : 1
% 5% I ] o 6% I I :
i 1 S
2 4% i g oy I I
1 4% ¥ : 1
o T
& w0} , !
2% A 2% 1 1 8
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Forward Model Topology

O (Given reservoir characteristics, operational parameters and initial

conditions, expected performance of the horizontal well is

predicted:
Input Input Hidden Output Output
Parameters Layer Layers Layer Parameters
13 neurons | 16 neurons 15 neurons 14 neurons | 16 neurons In(a)
In(b)
A © m N, N, N, c
h a/q;
p K/(aL,,)
) dh/b
; o N, N, N, o) ,f/g if
L pi/(Ab)
o - - - LL,,/b
n n . - k. k/b
L m m ] @p;/c
w; Pi/(Puib)
k. O— N N N q;/(cn)
f 1,16 2,15 3,14 Ak/b
p;/(wsa)

@ PennState ('/ 19



Inverse Model Design

O A cascade-forward network, with scaled conjugate-gradient

backpropagation algorithm, 960 training cases

O 3 hidden layers, with 20-19-18 neurons, with functional links

@ PennState /()"

Average Error

Average Error
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Inverse Model Topology

O Given observed performance of the horizontal well, operational

parameters and initial conditions, reservoir characteristics are

predicted:
Input Input Hidden Output Output
Parameters Layer Layers Layer Parameters
8 neurons | 20 neurons 19 neurons 18 neurons | 30 neurons
O m Ny 4 Ny 4 N 4 —O h
a k
b ¢
c Ly
Lhw c N1,2 N2,2 N3,2 _0 Wf
A Ky
n +
[ | [ | [ |
P; ] m ™ 24
[ | [ | [ | i
P - - - fungtlonal
T links
O— N1 20 N2 19 N3 18 =
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Probabilistic Assessment

k, md @ n k, md ®
Minimum 0.05 0.08 ! 0.05 0-095
Voot Likel 507 011 2 0.075 0.013
ostikely i : . 3 0.04 0.081
Maximum 0.1 0.14 4 0.06 0.089
Triangular Normal : : :
Distribution : : :
Al HHIm._ .‘.m.mnh|m““ Hhhn... 10,000 0.042 0.0125
1. Assign probability distributions and ranges 2. Generate a dataset of each uncertain
(minimum, maximum and most likely of parameter using a random number
uncertain input parameters. generation algorithm such that it has the
same probability distribution assigned in
Step 1. Each set of parameters represents a
case to run.
100% ¥ 1
o 90% T
> +
> 80% |
Z 70w §
S eow 1 n=1,2 3,...,10,000
S E
o 50% &
Kk, —»
S i D =~ Gy
£ 2% £ P —»
O 0% +
0% F—+—————— ¥
0 20 40 60 80
G,, BCF
4. Analyze the cumulative probability 3. Predict the output parameters for each
distribution of the predicted output set of uncertain parameters using the data-
parameters and report the values that driven forecasting tool.

correspond to probabilities of interest.
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RESULTS & DISCUSSION



Forward Model: Prediction Errors

O Cumulative gas recovery of cases that were not shown during
training are predicted with an 3.2% average-error.

O Decline-curve coeflicients are predicted with an average error of
3.1-6.9%.

ETraining Set ETraining Set
Validation Set Validation Set
a) Coefficient a Testing Set 0 b) Coefficient b Testing Set

Number of Occurrences
Number of Occurrences
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Forward Model: Cumulative Recovery

%0 = Numerical Model Parame ter | Error (%)
Data-Driven Model Z 112'_79
° c 1.5
Average 5.4
O Cumulative gas recovery after S 25 =
40 |+ Zéa)d; 5?0097 ;?(;;)ijaj 6,372 CV,_(if\ch) =0.187
10 years are predicted within

13% error range (3.2% on

30 +

average)

Gas Production Rate, MMSCF/d

O Accuracy of coefficient a “
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(initial production rate)
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1 h (ft) = 199 Yy =0.72 n=12
: : gcom et o
O Poorly predicted production ny e o

Gas Production Rate, MMSCF/d

60
performances follow similar
patterns, regardless of K
30
Coeﬁcient a 20 I e }Err(})rin}10-}year}Cu}muI}ative}Prc}:duc}tion}(%)f1}7.3

Time, years

@ PennState ('/ 25



Forward Model: Graphical User Interface

O A graphical-user-interface is developed that allows to input the
reservoir, hydraulic-fracture parameters and quickly outputs the

expected performance

(B Penn sTATE UNVERSITY DATA-DRIVENTOOLS el h [l | ([ PENN STATE UNIVERSITY DATA-DRIVEN TOOLS - OUTRUT ‘ [ESEREREC)
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16.2
Input Values =
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Min: 1,000 Max 8,000 7000 0 Time (vears)
ime (Years
oS S Gealt-bimere
- - Time, t | Flowrat
Specified Production Pressure, psf (psi) (I:;;;J c{?;ﬁq
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Forward Model: Probabilistic Assessment

O A probabilistic assessment of the performance of a typical

Williams Fork Formation well through Monte Carlo Simulation:

100% <
90%
80%
70% 7
60% +
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30% +
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10% +

Cumulative Probability, %

L,,,=4000 ft
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5-year Recovery (Numerical Model)
- 5-year Recovery (Data-Driven Model)
0% F——+—————+———
0 10 20
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Forward Model: Probabilistic Assessment

O P10, P50, P90 estimates for 5-year and 10-year cumulative

recoveries are in aggreement with numerical modeling results:

Numerical

Lhw = 4,000 ft Data-Driven
W 50
O 45 10-year
m
= 40 440 44.2
E 5-year
3 35 36.6 36.6 10-year
8 30 5-year 32.8 328
14 25 283 28.1 10-year
g S-year 44 243
o 20 206 203
215
8 10
=
€ 5
S
O 0

10% 50% 90%
Probability
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Inverse Model: Prediction Errors

O Mean of errors vary between
12.4% and 27.5%, with an
average error of 19.8% for all
parameters

Frequency analysis: majority
of cases were predicted within

20% error range

Considering the inverse nature
of the problem, acceptable
errors are obtained for the
purpose of reducing the

uncertainty

@ PennState )

Number of Occurrences Number of Occurrences

Number of Occurrences

N

ETraining Set
Validation Set

a) Thickness Testing Set

c¢) Porosity

e $e %s\o
o ':\o’ \o\o’ o

%) o AN
Absolute Error

mTraining Set
Validation Set
Testing Set

N
o
o
TITTTTRTITTRTTT RN,

e) Fracture length

R R

RS PN
R A A A A
,\'\ ,‘/'\ ,b'\ V\ (9'\ ‘b\ /\\

oo

S

o\

Absolute Error

®Training Set
Validation Set
Testing Set

11

o g S oe

S S Q S

© A B
AR R R AR A AN
TN N N NN ,\»{‘

o\

Absolute Error

Number of Occurrences Number of Occurrences

Number of Occurences

-

ETraining Set
Validation Set

000 :b) Permeability Testing Set
900 ¥
800
700
600
500
400 *
300 £
200 ¥
will E e
0%
\,\n\° q::\° (b.g\° V,\e\° 6J,\a\" %,\a\q /\Q\o
Absolute Error
 Training Set
. Validation Set
000 :d) Fracture width Testing Set

o\

o g g do o de
29

SY ST S ST S S
AR A AR A A A
,\'\ q:\ ,b'\ V\ (,J'\ ‘_O\ ,\\

oo

S

Absolute Error
 Training Set
Validation Set

f) Fracture permeability O Testing Set

o\
N
N

o do  oe

SSABER IR A
v o) 2 b K
A o o8 o o
N

oo

Absolute Error

29



Inverse Model: Graphical User Interface

O A graphical-user-interface is developed that allows to input
observed performance and known operational parameters, and
outputs reservoir and hydraulic-fracture parameters (e.g. Granite

Wash Reservoir, Texas):
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Inverse Model: Probabilistic Assessment

O A probabilistic assessment of reservoir characteristics of Williams

Fork Formation through Monte Carlo Simulation:
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CONCLUSIONS



Conclusions

O Screening tools are validated with blind cases:
o Cumulative gas recovery after 10 years is predicted with an average
error of 3.2%.
o Reservoir /hydraulic fracture parameters are predicted with an
average error of 19.8%.

O Inverse reservoir-characterization tool required more training
cases, and a more complex topology, yet resulted in higher ranges

of errors.
O These tools can be practically used as:

o as a decision-making tool through the use of a
graphical-user-interface application (outputting the expected
quantities of the related parameters within a fraction of second)

o as a probabilistic assessment tool as demonstrated with the case
study for Williams Fork Formation
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