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Abstract 

 

Seismic modeling and applications (imaging, migration and inversion techniques, e.g., Baysal et al., 1983; Pratt, 1999; Virieux 

and Operto, 2009) usually require a huge number of very expensive simulations to provide accurate results. Solutions are 

obtained from different values of some design parameters, such that frequency and position of source/receivers, while both 

geometry and boundary conditions remain fixed between simulations. Actual practice adopts an expensive and time-consuming 

brute force approach that generates a direct solution for each required set of parameter values. This imposes workable limits to 

the number of simulations that are feasible to compute in practice. In this work, an a priori reduced order method based on 

proper generalized decompositions (PGD) is exploited as an attractive alternative strategy to the usual practice. More precisely, 

the wave field is generalized to provide any particular solution of the seismic problem at negligible computational cost. The 

PGD technique is then applied to obtain an approximation of this generalized wave field, using it as a database for providing any 

required particular solution in a real-time framework. A simple 2D problem in frequency domain is used to exemplify the 

potential of this methodology. The strategy will be particularly useful whenever many realizations of modeling are required (i.e. 

many shots and frequencies are involved) such as in RTM and FWI applications. 
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Physical field: displacements, velocities, 
pressure, chemical concentration, wave 
amplitude,...  

Variables: space, time, model parameters, 
boundary conditions,... 

GENERALIZED  
model solution 

!  Parametric / high-dimensional solutions 

!  Variables in seismic exploration? 

space (≈108) 
time / frequency (≈102) 
source / receiver position (≈105) 
model uncertainties 

(velocity,...) 

p(x) = p(x1, . . . , xD)

p(x) ⇡ pn(x) =
nX

m=1

↵m�m(x)

!  Goal: build a surrogate model 



OFFLINE stage: compute the reduced basis only once in a lifetime " expensive! 1

ONLINE stage: evaluate the surrogate model as many times as required " cheap! 2

Reduced basis 
p(x) ⇡ pn(x) =

nX

m=1

↵m�m(x)

#  Database of any solution available to the user. 
#  Immediate, real-time access via linear combination of 

modes. 
#  Acceleration of seismic FM, RTM and IM (derivatives of 
p(x) also readily available!). 

#  Potential applications in control tasks, tools 
development, parameter identification, shape 
optimization,... 



Real-time agitation in 
harbors [Modesto et al. 
CMAME, 2015] 



pn(x,!, s) =
nX

m=1

↵m�m(x,!, s)

OFFLINE stage: compute the reduced basis only once in a lifetime " expensive! 1

A posteriori POD-based methods 
[Fernández-Martínez, Zaslavsky et al. 2015, 
Pereyra 2016] 

x     precomputed solutions      required 
x  SVD with computational cost 
x  Projection required to compute online 

the coefficients   
#  Non-intrusive in codes 
#  Optimal number of modes       in a least 

square sense 

space 

signal frequency 

source position 
!  In frequency domain: 

r pr
O(r3)

↵m

(n)

A priori PGD-based methods 
[Ammar et al. 2006, 2007, Modesto et al. 2015] 

#  High-dimensional solvers taking 
advantage of HPC tools 

#  Neither SVD nor precomputed 
solutions are required  

#  Suitable for real-time constraints 
#  Small impact in codes 
x  Optimality highly dependent on 

the model kpn � prkL2
= 0



pn(x,!, s) =
nX

m=1

F 1
m(x)F 2

m(!)F 3
m(s)

space 

signal frequency 

source position 

!  Acoustic problems (+ boundary conditions): 

!  In variational (weak) form: 

�pn + k2(!,x)pn = f(!)�(x� s)

F 2
nF

3
n�F 1

n + k2F 1
nF

2
nF

3
n = f� � (�pn�1 + k2pn�1) Nonlinear 

equation 
(greedy) !! 

Linear 
equation 

A(F 1
nF

2
nF

3
n , v) = L(v)�A(pn�1, v)

high-dimensional 
test function 

v = v1(x)F 2
nF

3
n + F 1

nv
2(!)F 3

n + F 1
nF

2
nv

3(s)

v = v1(x)F 2
nF

3
n + F 1

nv
2(!)F 3

n + F 1
nF

2
nv

3(s)Need for linearization techniques: 
alternate direction strategy 

1

2

3

!  Separated representation: 

v = v1(x)F 2
nF

3
n + F 1

nv
2(!)F 3

n + F 1
nF

2
nv

3(s)



F 3
m = g(F 1

m, F 2
m) +

m�1X

i=1

h(F 1
i , F

2
i , F

3
i )

v = v1(x)F 2
nF

3
n + F 1

nv
2(!)F 3

n + F 1
nF

2
nv

3(s)

!  PGD cost:  acoustic solver × number of terms       × number of linearized iterations 

A(F 1
nF

2
nF

3
n , v) = L(v)�A(pn�1, v)

(n)
!  Typical numbers:          ≈103                  ≈3       << 107 (brute force) !! 

Algebraic 
equation !! 

!  Explicit evaluation for all the source position terms          ,           m = 1, . . . , npn(x,!, s) =
nX

m=1

F 1
m(x)F 2

m(!)F 3
m(s)



F 2
m = g(F 1

m, F 3
m) +

m�1X

i=1

h(F 1
i , F

2
i , F

3
i )

v = v1(x)F 2
nF

3
n + F 1

nv
2(!)F 3

n + F 1
nF

2
nv

3(s)

!  PGD cost:  acoustic solver × number of terms       × number of linearized iterations 

A(F 1
nF

2
nF

3
n , v) = L(v)�A(pn�1, v)

(n)
!  Typical numbers:          ≈103                  ≈3       << 107 (brute force) !! 

Algebraic 
equation !! 

!  Explicit evaluation for all the frequency terms           ,           m = 1, . . . , npn(x,!, s) =
nX

m=1

F 1
m(x)F 2

m(!)F 3
m(s)



v = v1(x)F 2
nF

3
n + F 1

nv
2(!)F 3

n + F 1
nF

2
nv

3(s)

!  PGD cost:  acoustic solver × number of terms       × number of linearized iterations 

A(F 1
nF

2
nF

3
n , v) = L(v)�A(pn�1, v)

(n)
!  Typical numbers:          ≈103                  ≈3       << 107 (brute force) !! 

!  Acoustic propagation required to evaluate all the spatial terms           ,           pn(x,!, s) =
nX

m=1

F 1
m(x)F 2

m(!)F 3
m(s)m = 1, . . . , n

Acoustic solver 

�p+ k2p = f�

“new” velocity model “new” source 

!  Non-intrusive " HPC-based software can be used !!           

�F 1
m + ↵(F 2

m)F 1
m = g(F 2

m, F 3
m) +

m�1X

i=1

h(F 1
i , F

2
i , F

3
i )



angle [rad] 

R

p(x,!) p(x,!)

Example: wave propagation in open domain 



angle [rad] 

p(x,!)

R

p1(x,!)
p(x,!)

Example: wave propagation in open domain 



angle [rad] 

p(x,!)

R

p10(x,!)
p(x,!)

Example: wave propagation in open domain 



!  120 iterations for a good wave phase approximation (goal in seismic applications !!). 

angle [rad] 

p(x,!)

R

p40(x,!)
p(x,!)

Example: wave propagation in open domain 



angle [rad] 

p(x,!)

R

p70(x,!)
p(x,!)

Example: wave propagation in open domain 

!  120 iterations for a good wave phase approximation (goal in seismic applications !!) 
!  210 iterations for an acceptable wave height approximation (less important). 



!  Isotropic version of the BP 2007 TTI model in frequency domain 
!  1~5 Hz variation in frequency 
!  Source / receiver position varying along all the surface 
!  Discretization: 100 nodes for both parametric dimensions 

Exploiting a priori model reduction methods to accelerate seismic simulations

the approximation are acceptable. The presented MOR strat-
egy is applied next in a 2D acoustic wave propagation example
in frequency domain to exemplify such approximation errors.

Fixed source 

Model velocity 

Figure 1: Isotropic version of the BP 2007 TTI model.

Example for acoustic propagation with variable signal fre-
quency

A demonstration of the PGD strategy is used in the example
depicted in Figure 1. An isotropic version of the BP 2007 TTI
model is used. Here, the PGD is applied to approximate a
wave field p(x,w) where the shot location is fixed at the sur-
face point indicated in Figure 1, and the frequency is variable
along the range 1 to 5 Hz. Therefore, note that this corresponds
to seek a solution of problem (1) in the form

p(x,w)⇡ p

n(x,w) =
nX

m=1

F

m

1 (x)Fm

2 (w).

Note that the proposed PGD strategy holds without loss of gen-
erality by imposing F

m

3 (s) = 1 for m = 1, . . . ,n in Equation (2)
and applying only the two first steps, i.e. Equations (5) and (6),
described in the previous Section.

Note from Figure 2 that n = 70 terms can be used to obtain a
reasonable PGD solution p

n(x,w⇤) evaluated at three differ-
ent frequency values w⇤ = {1.85, 3.52, 4.81} Hz, compared
to the particular propagation of the acoustic model computed
at a fixed frequency w⇤. Only 3 iterations per term have been
used within the iterative scheme. Consequently, assuming that
the accuracy attained is sufficient to our needs, the wave field
at any source position can be readily reconstructed as many
times as required. The computational cost for obtaining the
expanded basis is 210 applications of the wave model.

CONCLUSIONS

An a priori MOR strategy based on proper generalized de-
composition methods is explored to accelerate seismic simu-
lations. Such strategy allows to convert modeling parameters
such as source location or frequency into free variables. The
methodology, nevertheless, can be extended to allow variation
of other parameters of our equation and boundary conditions.

PGD with 70 terms   

Freq = 1.85 Hz 

Target solution 

Freq = 3.52 Hz 

PGD with 70 terms   

Target solution 

Freq = 4.81 Hz 

PGD with 70 terms   

Target solution 

Figure 2: Wave field comparison between the target solution
and its PGD approximation for different frequency values.
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test case 
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p(x,!) ⇡
nX

m=1

F 1
m(x)F 2

m(!) with fixed source  All PGD approximations 
with error < 10% 



with fixed freq = 1 Hz p(x, s) ⇡
nX

m=1

F 1
m(x)F 2

m(s)
Target solution 

PGD 20 terms PGD 60 terms 

PGD 100 terms PGD 170 terms 

particular source 

error > 50% error = 35% 

error = 10% error < 1% 

Velocity profile 

Figure 1 Wave propagation example: absolute value of the wave field for a fixed source location and its

approximation using the proposed strategy for different number of terms in the PGD expansion. Errors

shown are L

2
norms between particular and PGD solutions using the same modeling scheme.

2. Assume now that F1, from previous step, and F3 are known. The function F2 2 Iw is directly
evaluated as

F2(w) =
f2

b
f (w)� 1

b

n�1

Â
m=1

b m

F

m

2 (w), (5)

which has a negligible cost. Analogously to the previous step, the expressions of all the co-
efficients appearing in Equation (5) are listed in Table 1. After solving (5) the function F2 is
normalized.

3. Assume that F1 and F2 are known from the two previous steps. The function F3 2 I

s

is directly
evaluated as

F3(s) =
f1

g
F̄1(s)�

1
g

n�1

Â
m=1

gm

F

m

3 (s), (6)

which also has a negligible cost. Table 1 also lists the expression of the coefficients appearing in
(6).

These three previous steps are iterated at each enrichment stage in Equation (3). Assuming a compu-
tational cost C given by an HPC propagation of the spatial wave model, and t maximum iterations per
term, the global cost of the PGD strategy is C · n · t. Using brute force, a migration algorithm would
require a global cost C ·n

s

·n
f

·2, if direct methods cannot be applied, where n

s

is the number of sources
and n

f

the number of frequencies. By using reasonable numbers such as t = 3 and n = 1000 for the PGD
approximation and n

s

= 1000 and n

f

= 100 we can see a potential benefit from using PGD approxima-
tions, if the errors related to the approximation are acceptable. The presented MOR strategy is applied
next in a 2D acoustic wave propagation example in frequency domain to exemplify such approximation
errors.

Example: 2D acoustic wave propagation with variable source/receiver location

A demonstration of the wave propagation using the PGD strategy is depicted in Figure 1. We use
an isotropic version of the BP 2007 TTI model. Here, the PGD is used to approximate a wave field
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All PGD approximations 
with error < 10% 

Target solution 

PGD with 2 103 terms 

Freq = 2.82 Hz  Freq = 4.99 Hz  



!  A priori reduced order approximations can be exploited for seismic applications:  
#  Avoids SVD and precomputed solutions 
#  Provides immediate access to seismic propagations and derivatives 
#  Take benefit from HPC software and non-intrusive implementations 
#  More suitable for wave phase errors than for wave height errors  
 !  First tests provide promising results with sufficient accuracy and moderate number 

of terms 
 

 
!  Currently working in: 

#  Implementation of PGD solutions to accelerate imaging tools (RTM) 
#  Reducing the offline cost: 

#  Exploring spatial solvers that take profit from the PGD structure (iterative 
refinement techniques, preconditioners,...) 

#  Adapted meshes  
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