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Abstract

This presentation describes a case history where outcrop information was used to help interpret the relationship between lithology, structure,
and current tectonics in a challenging 'stress sensitive' reservoir setting. We describe firstly the methodology of building in situ stress profiles
for wells and the benefits to be derived by integrating them with static fracture data, fluid type, and flow distributions; and secondly the value
of studying representative outcrop analogs.

In situ stress profiles have been constructed from data acquired in deep exploration and appraisal wells in the Zagros petroleum province. The
profiles used sonic and density log data, formation rock properties from core, pore pressure profiles, and leak-off data to estimate the
magnitudes of the 3 three principle stresses (Sv, SHmax, and Shmin). The azimuths of SHmax and Shmin were obtained from induced fractures
seen in the image logs.

Rock types in the drilled Tertiary-Cretaceous-Jurassic-Triassic sequence varied from very strong massive carbonates, through interbedded
carbonates and mudstones, to weak mudstone dominated intervals as well as anhydrite dominated intervals. Consequently the models show
large variations in stress regime and stress anisotropy with depth due primarily to this wide range in rock strengths and stiffness. A
geomechanical zonation can be identified including intervals dominated by high stress anisotropy and strike-slip conditions; and other intervals
of low stress anisotropy and normal conditions. This zonation is to a large degree mirrored by variations in both fracture intensity and azimuth
as derived from image log interpretation. Observed patterns of fracture flow are consequently influenced by these conditions.

High quality analog exposures of folds in the Spanish Pyrenees record clear evidence for a similar geomechanical zonation within the ancient
stress field, now 'fossilized' but seen in the deformation pattern. This is compared with, and used to interpret, the sub-surface information
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described above. The geomechanical zonation developed by this approach may be incorporated in reservoir modeling and also in the planning
of new wells both for stability and optimum fracture related production.
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Summary Location Hortoneda- near Tremp egens
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regularly used for field schools, especially for those currently working in the Za-
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The challenge of fractured reservoirs

Cenozoic of the foreland
basins

If the Fe-charged red volume in the outcrop photo (right) mimics the hydrocarbon
distribution then vertical wells could completely miss it, as can wrongly-directed Cenozoic of the Pyrenees
horizontal wells; perhaps the most productive trajectory should be

deviated to maximize the intersection — but what deviation and what target ? The
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heterogeneous fracture distribution, coupled with the often poorly understood

charge history, can create major challenges for optimising and sustaining

production in fractured reservoirs. This is compounded by the constraints posed by

1D well data and by the resolution limits of seismic acquisition.
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Hortoneda stratigraphy and geological setting
The Hortoneda exposure reveals, from base upwards, a thick section of Turonian marls and marly limestones overlain by 3 well-layered coarsening upward parasequences,
followed by a marly interval which passes upward to a 75 m thick Coniacian limestone containing basal shoreface carbonates, patch reefs with 2 cycles of corals and
rudists, and finally at the top grainstones with cross-bedding. Both the upper and the lower carbonate units are folded by anticlines but they have different geometries . .
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A close coupling between rock strength, differential stress magnitude, and stress regime is seen. Fracture intensity is high in Zones 1 and 3
but much lower in Zone 2 (see below).
Contrasting mechanical stratigraphy and fracture patterns Hortoneda Upper: massive carbonate
At Hortoneda an upper massively bedded carbonate formation accommodated N-S shortening by an opposing /i
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system of low-angle thrusts whereas the highly layered micritic carbonate formation below responded by buckle M 111
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folding and reverse faulting on its N limb. The upper structure has low limb dips and about 15% shortening, whereas ;:’ &
the lower asymmetric anticline has steeper limb dips and a higher degree of shortening. The presence of a low- i
angle decollement between the two structures is implied.
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