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Abstract 

 

Campeche Sound, located offshore of eastern Mexico on the continental shelf of the Gulf of Mexico, is the most important petroliferous region in Mexico. 

Including the giant Upper Cretaceous Carbonate reservoir Cantarell and Ku-Zaap-Maloob oil fields, Campeche Sound production represents close to 80% 

of the national production of Mexico. At the beginning of Upper Cretaceous, a lowering in sea level, combined with preexisting high relief of the platform 

margin, is the likely cause of carbonate slope sedimentation in seen in the 3D seismic data volume where the reservoir rock consists mainly of facies of 

carbonate debris flows deposited on the Yucatan Slope alternating with pelagic deposits. The debris flows consist of heterogeneous carbonate clasts in a 

carbonate matrix. The formation is diagenetically altered through dolomitization, dissolution, and fracturing. Near the convergence of the North America, 

Caribbean, and Cocos plates, the study is structurally complex, with significant compression and strike-slip faulting during Late Oligocene to Miocene. 

The traps include east-west oriented anticlinal structures that are bounded by reverse and thrust faults. The stratigraphic and structural framework of the 

carbonate reservoirs was interpreted based on 3-D seismic and well data and used to create a 3-D grid for reservoir modeling. For this field, faults are a 

major control on secondary porosity distribution; therefore, an accurate and detailed fault interpretation is essential for porosity modeling. To enhance our 

structural interpretation, we applied edge-preserving, structure-oriented filter to the seismic survey, compute coherence, and then enhanced the faults 

using a modern Laplacian of a Gaussian filter, which also measured fault dip and azimuth. These 3D structural images were then integrated to generate a 

more precise 3-D model framework. 
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Campeche Sound, located offshore of eastern Mexico on the continen-
tal shelf of the Gulf of Mexico, is the most important petroliferous region 
in Mexico.  Including the giant Upper Cretaceous Carbonate reservoir 
Cantarell and Ku-Zaap-Maloob oil fields, Campeche Sound production 
represents close to 80% of the national production of Mexico. At the be-
ginning of Upper Cretaceous, a lowering in sea level, combined with 
preexisting high relief of the platform margin is the likely cause of car-
bonate slope sedimentation as seen in the 3D seismic data volume, 
where the reservoir rock consists mainly of facies of carbonate debris 
flows deposited on the Yucatan Slope alternating with pelagic deposits. 
The debris flows consist of heterogeneous carbonate clasts in a carbon-
ate  matrix. The formation is diagenetically altered through dolomitiza-
tion, dissolution, and fracturing. Near the convergence of the North 
America, Caribbean, and Cocos plates, the study is structurally com-
plex, with significant compression and strike-slip faulting during Late Oli-
gocene to Miocene (Pindell and Miranda, 2011). The traps include 
east-west oriented anticlinal structures that are bounded by reverse and 
thrust faults.The stratigraphic and structural framework of the carbonate 
reservoirs was interpreted based on 3-D seismic and well data and used 
to create a 3-D grid for reservoir modeling. For this field, faults are a 
major control on  secondary porosity distribution; therefore, an accurate 
and detailed fault interpretation is essential for porosity modeling.  To 
enhance our structural interpretation, we applied an edge preserving, 
structure-oriented filter to the seismic survey, computed coherence,and 
then enhanced the faults using a modern Laplacian of a Gaussian filter 
which also measured fault dip and azimuth. These 3D structural images 
were then integrated to generate a more precise 3-D model framework.   
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Figure 1. Location map of the Submarine 
Campeche Foldbelt which contained large Gulf of 
Mexico producing fields such as Cantarell and Ku, 
Maloob, Zaap. The field objective of the project is 
contained in this area too (After Murillo-Muñeton, 
et al., 2002). 

Figure 2. Stratigraphy and well type log for 
study area. Reservoir rock to characterize to 
this study is from Lower Cretaceous to Upper 
Cretaceous.  Generally more intense dolomiti-
zation is present in Breccias of the Upper Cre-
taceous zone. 
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Figure 3. Basemap of the study area. Informa-
tion to characterize this reservoir includes a seis-
mic survey and the data from four exploration 
wells. These data includes well logs, core de-
scription, and core studies.
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Figure 4. Core fragments from the reservoir 
rock. The samples exhibit fracture and vugs 
with heavy oil stain.

Figure 5. Microphotographs from cores 
showing dolomite with intercrystalline and 
vug porosity.
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Figure 6. Porosity vs. Permeability plot, the 
distribution of the permeability is broad and 
depend on the connectivity and the porosity 
types.
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Figure 7. The seismic data used was a 3D WAZ depth migrated survey, originally
the survey had a size of 2635 km2 but was cropped to focus on the field area
(557.5 km2). The expected result was after a structure filtering process, then, the structural
image will be enhanced to interpret. The first step was to apply an edge preserving
structure oriented filtering, as is proposed by Chopra and Marfurt (2007), was
applied in order to try to improve the structural image. This process highlighted subtle structural
characteristics that were hard to see in the original data, such as fault planes
(Figure  A and B). The rejected noise is shown it in the figure C. 58000
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Methods
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Figure 8. In a traditional interpretation workflow, based only on amplitude, it is even possible to  
see what are the direction and position of the main fault planes, even for an experienced seismic 
interpreter. The position of the fault plane could have uncertainty, and its spatial continuity can be 
confusing. 

Figura 9. In consequence, the resulting interpreted fault plane, varies easily from line to line, 
producing a zig-zag fault plane. These zig-zag fault planes are not useful to model into a 3D 

Figure 10. Using attributes related to curvature, such as coherence, similarity or Sobel filter, as pro-
posed by Chopra and Marfurt (2007) and using a filtrated data, the fault planes are easier to identify. 
The minor fault planes, that initially could be confusing to interpret are now easy to interpret and 
follow from line to line

Figure 11. The result is an interpreted fault plane  can vary significantly from line to line, with a 
better consistency in its interpretation and a minor uncertainty in its direction. These fault planes, 
interpreted using this technique are easier to model into a 3D geological grid.

Figure 12. The slices generated from the attributes are helpful to identify main faults and possible 
fracture corridors. It is even possible to identify possible limits that could separate and compartmen-
talized structures.
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Results
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Figure 16. The interpreted faults are converted to faults in the fault model. These faults will 
be part of the 3D grid where the properties will be populated.

Figure 13. The fault planes interpreted with these methods are presented in this figure. The 
interpreted faults provide a structural framework to understand the structural evolution of the 
structural traps and for the interpretation of the top and base of the reservoir.

Figure 15. Isometric view of a surface generated with the reservoir top interpretation. The in-
terpreted faults are included too. This surface can be used as a quality control measure for 
the interpretation and the consistency of the fault planes can be verified.

Figure 14. The interpretation of the top of the reservoir is covered with a dense interpretation 
every 10 lines. The structural framework provided by the previous fault interpretation helps to 
make the interpretation consistent. In a next step, the base of the reservoir will be interpreted too.
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Conclusions

 Using a structurally oriented filter can enhance the original 
seismic data. These filters subtract the remaining noise and 
preserve the structural characteristics. Using curvature attri-
butes permits the identification of discontinuities that are hard 
to see using amplitude, such as fault planes and possible frac-
ture trends. These attributes support the seismic interpretation 
because it is possible to identify the position and continuity of 
the fault planes. The resulting faults are a structural framework 
that supports the interpretation of surfaces, such as the top 
and the base of the reservoirs.
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