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Abstract 

Models for fluvial architecture are important for predicting reservoir presence, distribution, quality, and connectivity in continental basins. 

However, most fluvial models are based on perennial precipitation zone rivers and do not take discharge variability into account; this oversight 

means many systems preserved in the sedimentary record are modeled inaccurately. Multiple authors (Leier et al., 2005; Fielding et al., 2009; 

Plink-Bjorklund, 2015) have described a link between seasonal precipitation and variable river discharge in monsoon domain and subtropical 

rivers, which results in distinct morphodynamic processes and a noticeably different sedimentary record from perennial precipitation zone 

rivers in tropical rainforest zone and mid-latitudes. These seasonal effects on surface water supply affects river morphodynamics and 

sedimentation on a wide timeframe, ranging from large single events to an inter-annual or even decadal timeframe. The resulting sedimentary 

deposits lead to differences in fluvial architecture on a range of depositional scales from sedimentary structures and bedforms to channel 

complex systems. These differences are important to accurately model for several reasons, ranging from stratigraphic and paleoenviromental 

reconstructions to more economic reasons, such as predicting reservoir presence, distribution, and connectivity in continental basins. 

This study further develops our understanding of discharge variability using a modern global river database created with data from the Global 

Runoff Data Centre (GRDC) and the University of Wisconsin's Center for Sustainability and Global Environment (SAGE). We compared river 

discharge patterns in a variety of climate zones (rainforest, monsoonal, sub-humid subtropics, arid to semi-arid subtropics, mid-latitude, and 

arctic) to establish the similarities and differences in discharge patterns as well as sediment distribution. A key difference between this study 

and previous studies is the inclusion of arctic rivers in the dataset. The ultimate objective of this research is to develop differentiated fluvial 

facies and reservoir models for each of these climate zones. 
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How to Examine Discharge VariabilityIntroduction
Models for fluvial architecture are important for predicting reservoir presence, distribution, quality, and
connectivity in continental basins. However, mos t fluvial models are based on perennial precipitation
zone rivers and do not take discharge variability into account; this overs ight means many systems
preserved in the sedimentary record are modeled inaccurately. Multiple authors (L eier et al., 2005;
F ielding et al., 2009; P link-Bjorklund, 2015) have started to describe a link between seasonal
precipitation and variable river discharge in the monsoonal domain and subtropical rivers , which results
in distinct morphodynamic processes and a noticeably different sedimentary record from perennial
precipitation zone rivers in tropical rainforest zone and mid-latitudes. T hese seasonal effects on
surface water supply affects river morphodynamics and sedimentation on a wide timeframe, ranging
from large s ingle events to an inter-annual or even decadal timeframe. T he resulting sedimentary
deposits lead to differences in fluvial architecture on a range of depositional scales from sedimentary
structures and bedforms to channel complex systems. T hese differences are important to accurately
model for several reasons, ranging from stratigraphic and paleoenviromental reconstructions to more
economic reasons, such as predicting reservoir presence, distribution, and connectivity in continental
bas ins .

Aims
• F urther develop understanding of discharge variability us ing a global river database created with 

data from the G lobal R unoff Data C entre (G R DC ).
• E xamine daily gauging data from 595 river stations  worldwide and group them based on the 

location of the gauging station and group them into seven different climate zones: Arid to semi-arid 
S ubtropics , C old, Humid S ubtropics , Monsoonal, P olar, R ainforest, and Temperate.

• Use the seven climate zones  to better understand the nature of discharge variability and thus  the 
transportation of sediment.

• Develop differentiated fluvial facies  and reservoir models  for each climate zones. 

Methods
R ivers were compared by two main metrics : discharge variability (both monthly and yearly, see below
for equations) and climate. T he rivers used in this study are from the GRDC’s pristine river databas e
and were screened to ensure a long enough historical record for analys is of decadal-scale variability.
T he seven climate zones definitions and boundaries were adapted from the P eel et al, 2007 update of
the K öppen-G eiger climate class ifications and were combined with the Monsoon P recipitation Domain
Index (Wang and Ding, 2008). R ivers were ass igned climate zones based on the location of the gaging
stations and their respective drainage bas ins . S ediment discharge data comes from the US G S Water
Data for the Nation database.

1) Monthly Discharge Variability: DVIm = 

2) Yearly Discharge Variability: DVIy =

Discharge Variability Temporal Resolutions
• Variability needs to be considered on different temporal resolutions

• Annual variability � Inter-annual variability � Discharge Variability Index
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Annual Variability
o Strength: Event based assessment (such as major 

flood analysis to understand the nature of flooding)
o Weakness: Difficult to compare multiple rivers 

against each other

Inter-annual Variability 
o Strength: Examines the range in variability for each 

river over time
o Weakness: Still difficult to compare multiple rivers 

against each other

Discharge Variability Index
o Unit-less number for discharge variability
o Strength: Able to compare it against the entire 

database of rivers
o Weakness: DVI compresses variability into one 

number
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The Link Between Discharge Variability and Sediment Transport
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Largest Flood Analysis 
• How do large floods  compare to average flow?
• E ffect of s ingle storm events  vs  seasonal buildups

• Arid systems are dominated by punctuated 
s ingle events

• Monsoonal and P olar systems have strong 
seasonal controls

• R ainforest systems rarely flood more than their 
yearly average
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Maximum suspended sediment in one day: 46,200 tonsMaximum suspended sediment in one day: 41,000 tons

• L imited sediment discharge data 
• C omparing Temperate and Arid C limates

• Order of magnitude difference in water discharge, yet sediment discharge peaks  are 
on the same order of magnitude
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Outcrop Scale Fluvial Architecture 

Key Takeaways
• Variable discharge is  a key control on fluvial 

sedimentation
• It is  necessary to use different temporal 

resolutions when assessing a river system’s 
variability

• Discharge variability is  controlled by a number of 
factors , but can be predicted by climate zone
• Different climate zones have different 

temporal controls  on discharge and 
different degrees  of predictability

• T he majority of sediment transport occurs  during 
flood stage

• R ivers  with highly variable discharge have 
different fluvial architecture from rivers  with 
lower discharge variability that is  characterized 
by:
• Tabular deposits
• In-channel mud layers
• Upper flow regime sedimentary 

structures

a

b

c

Examples of flood units and macroforms.
(a) Thickness of individual flood deposits in lateral accretion sets in the lower 

part of the channel fill is on decimeter scale, in contrast to the overlying 
flood units that are 1–2m thick. Each flood deposit is draped by mud, 
Eocene Green River Fm., Uinta Basin, USA. 

(b) Extremely thick, erosionally bounded flood deposits that consist of 
stacked scour and fill, convex-up low-angle and planar laminated 
sandstones are laterally continuous for more than 100 m, Eocene Wasatch 
Fm., Uinta Basin, USA. Paleocurrent from left to right. 

(c) Thick flood units that display finer-grained (very fine sand to silt) upper 
parts that are climbing-ripple laminated, Cretaceous Piceance basin, USA. 
Paleocurrent obliquely into the cliff.

Avulsions that are common in rivers with seasonally variable discharge generate highly amalgamated 
tabular-looking channel zones. In areas with lower channel return frequency, flood units 
characteristically contain floodplain deposits with numerous tabular splay sands, overlain by channel fills.
(a) Eocene Wasatch Fm., Uinta Basin, USA – High channel return frequency
(b) Eocene Green River Fm., Uinta Basin, USA – Lower channel return frequency
(c) Cretaceous Williams Fork Fm., Piceance Basin, USA – Lower channel return frequency 
Yellow arrows indicate channel fills. Images from Plink-Bjorklund, 2015.

a

b c

In-channel mud layers commonly occur in monsoonal and subtropical rivers.
(a) Decimeter-thick pedogenically modified mud layers in lateral to vertical 
accretion sets. Eocene Green River Formation, Uinta Basin, USA.
(b) Desiccated and broken-up mud drapes at the bottom of seasonally dry Rio 
Colorado, Altiplano, South America (Donselaar et al., 2013). 
(c&d) Desiccated, curled, and broken-up mud drapes in the deposits of Wadi 
El Arish, Egypt (Sneh, 1983).

b

d

a

b c

In-channel mud deposits are characteristically interbedded with sandy channel 
fill deposits. These events are separated by erosional contacts and deformed 
tens of meters wide mud horizons.
(a) Tens of meters wide mud horizons at the top of flow-perpendicular flood 
deposits in River Gash, Sudan. (Abdullatif, 1989).

a

Inter-Channel Architecture
• S edimentary structures  are primarily 

composed of upper flow regime and high 
deposition rate structures

• S andy channel fill is  interbedded with in-
channel mud layers

Distribution of Sedimentary Structures
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Channel to Multi-Channel Scale Architecture
• E xperience frequent avuls ions
• C reate highly tabular deposits  with thicknesses  that range from 

decimeters to 10’s of meters 




