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Abstract

The Duvernay Shale liquids play, running along the foothills east of the Rocky Mountains, possesses all the prerequisites of being a successful
unconventional play, and has gained attention of the oil and gas industry in Alberta, Canada. Even though the net shale isopachs range between
25 m and 60 m for the most part within the play, at places it thins out. Considering the poor vertical resolution of the available seismic data, it
is not possible to identify and characterize the thin Duvernay sweet spot zones using seismically-derived attributes. In a case study taken up
recently, we found it challenging characterizing the thin Duvernay reservoir zone, and consequently developed a workflow that successfully
addressed the challenge and identified the thin sweet spots. The workflow entailed extracting the P- and S- reflectivities from prestack seismic
data using Fatti et al.'s approximation to the Zoeppritz equations, and then subjecting them to thin-bed reflectivity inversion. The latter process
removes the time-varying effect of the wavelet from the data and the output of the inversion process can be viewed as spectrally-broadened
seismic data, retrieved in the form of broadband reflectivity which can be filtered back to any desired bandwidth. This usually represents useful
information for interpretation purposes. Filtered thin-bed reflectivity, obtained by convolving the reflectivity with a wavelet of a known
frequency band-pass, not only provides an opportunity to study reflection character associated with features of interest, but also serves to
confirm its close match with the original data. These P- and S-reflectivities with higher bandwidth were inverted into P- and S-impedances
using model-based impedance inversion. This workflow enabled us to differentiate between the Upper and Lower Duvernay intervals. Sweet
spots were identified based on the constrained volume that was created using multi-attribute analysis.
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Duvernay Formation

The Devonian Duvernay shales are proven source rocks for many of the large
Devonian oil and gas pools in Alberta including the Leduc discovery in 1947.

The Duvernay shale basin spans approx. 50,000 sg. miles, with an estimated 7,500
sg. miles within the thermally mature or wet gas window.

Holds an estimated 443 trillion cubic feet of gas and 61.7 billion barrels of oll
(Source: AER).



Duvernay Formation

In Alberta, the Duvernay shales are found in
the East Shale Basin and West Shale Basin,
both of which differ in the geological setting
and their characteristics.

The present case study focuses on a
dataset from central Alberta and situated In
the West Shale Basin.

Duvernay Formation
® Core sample site
- Well location used for mapping
[} buvemay Formation
[ | Reeflcarbonate platform (Switzer ot al , 1994)
| Urban area
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Index map showing the Duvernay
Formation in the province of Alberta
(After Rokosh et al., 2012)




Characteristics of Duvernay

Lithology: Fine grained and silica (quartz) rich. Fine grained rocks have increased total surface area
which leads to a higher absorbed gas component in organic rich rocks. More brittle and favorable for
fracking.

TOC: Measure the organic matter that was preserved in the rock. TOC varies from 1-20% .
Thickness: required for storage and ultimate economic of the play. Varies from 10-70m.

Effective Porosity: Pore space required for storage of hydrocarbon once generated from the organic
material contained in the rock. Varies between 3 and 5%.

Pressure Gradient: Over-pressured reservoirs allow for increased storage. It is over pressured
nature.



Characteristics of Duvernay

Element Desired Duvernay
Lithology Fine grained/silica-rich Fine grained/silica-rich
Thickness > 40m 10-70m
TOC > 1% 1-20%
Effective Porosity >2.5% 3-15
Pressure Gradient > 0.5 psi/ft 0.68-0.81 psi/ft

Areal Extent

Large

7,500 square miles




Some key elements for characterization of shale plays
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Mineralogy

Organic richness
Maturation
Porosity/permeability
Faults/fractures
Brittleness
Pore-pressure/stress
Thickness

Oil/gas-in-place

—_

Can be determined using lab testing of samples,
geochemical analysis, and log measurements

—

—_—

Can determine using seismic data and log
L measurements

—_

} Estimated with knowledge of various parameters



Sweet spot identification

High @ “High porosity is a prerequisite for better reservoir
quality . ”

“Brittle rocks frac much better than ductile rocks
and enhance the permeability of those zones.”

Interval High Brittleness

Organic richness “Higher the TOC, better the potential for hydrocarbon
(TOC) generation”




Use of seismic for sweet spot identification
1. Properties that help seismic to identify sweet spots.

“Changes in the porosity of shale formations influence V,, V., and p, thus should be
detected on the seismic response.”

2. Such influence can be detected on different pairs of attributes

Ip — I, Ap — up and Ip — %etc.
S



Location of brittle shale pockets

1. Brittleness of a rock formation can be estimated from the computed Poisson’s ratio
(strength) and Young’s modulus (stiffness) well log curves.

2. Brittle rocks exhibit high Young’s modulus and low Poisson’s ratio (PR).

E212(31§—4152> o dp -2k
S\p(2 - 1?) 2(I5 — I3)

315 — 41
Ep = 3( )

3. Once P-impedance and S-impedance attributes are determined, different rock
parameters can be computed from them.
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Characterization of Duvernay
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= We begin our characterization exercise with the
appropriate well-log curves.
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Well-to-seismic ties
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Well-to-seismic ties
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Amplitude spectra of a statistical wavelet (shown above) indicates that the dominant frequency in the data is 20 Hz.
This implies the vertical resolution for this data set is approximately 48m (V. = 3800 m/s).

It is therefore challenging to characterize a 17m thick formation.



Workflow for simultaneous inversion

Data conditioning

Load seismic gathers, well data and Horizons

Conditioning of gathers

h 4 h 4

Y

A 4

angle gathers

angle stacks

Muting Band pass Random noise Time variant
attenuation trim static
lGenerate stack
Well Correlation
Generate
k4 A 4
low

frequency model

Y

W

h

Compute angle dependent
statistical wavelets

Inversion analysis using
initial model and angle
dependent wavelets

Inversion analysis
applied to full volume

Inversion



Simultaneous Iinversion output
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Simultaneous Iinversion output
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Crossplot of Lambda-rho vs Mu-rho

Cross-plot of Ap vs up
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Time

back projection indicates that
anomalous points are coming from

Similarly,
= Lower Duvernay formation.
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New approach followed

Angle Gather

Y

Fatti’s Equation

Re Rs *Rq

Thin-bed process to enhance
the frequency content.

Model-based Inversion.

Ip Is p*

Generate Ap, up, g, Ve —Vs ratio, Young’s Modulus etc attributes.

* Computation depends on the quality of input data.



New approach followed
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Quality control
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Lambda-rho vs Mu-rho crossplot (simultaneous inversion)
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Lambda-rho vs Mu-rho crossplot (new approach)
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Lambda-rho vs Mu-rho crossplot (new approach)

~ Here, we are able to differentiate between
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E-rho vs Poisson ratio crossplot (simultaneous inversion)
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E-rho vs

E-rho

Poisson ratio Cross

D
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Constraining the data
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By using a restricted range of values for each of the attributes (E-rho, Poisson’s ratio, LR and
MR) based on crossplots shown in the previous slides, and further subdividing the output
into Upper Duvernay (green) and Lower Duvernay (yellow) the distribution is shown along an
inline from the 3D survey.



Constraining the data

Horizon slice from the constrained attribute data over a 10 ms window below the
Duvernay top marker.

It shows the distribution of the Upper (green) and Lower (yellow) Duvernay shales.



Constraining the data

=

1.ms

Horizon slice from the constrained attribute data over a 10 ms window below the
Duvernay top + 10ms marker.

It shows the distribution of the Upper (green) and Lower (yellow) Duvernay shales in
this window, which is lower than the one shown in the previous slide.



TOC estimation for Duvernay using seismic data

Passey et al. (1990) developed the AlogR technique for calculating TOC in organic-rich shales
using well log curves.

This method is based on the porosity-resistivity overlay to locate hydrocarbon bearing shale
pockets.



TOC estimation for Duvernay using seismic data
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TOC estimation for Duvernay using seismic data
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TOC estimation for Duvernay using seismic data

Methodology: Cross correlation analysis

1. AlogR vs different attributes generated from well data which can be derived from
seismic data.

2. The attribute which shows the maximum correlation is selected and cross-plotted
against AlogR for obtaining a relationship.

3. That relationship is then used for extracting AlogR volume from 3D seismic data.



TOC estimation for Duvernay using seismic data
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TOC estimation for Duvernay using seismic data

4.6

T2

O
O@
g B

. 145
[ 127
@ C
109
@
ﬁ . g1
Ty
L
o O 7
O
54
O
@ 3
=
(i
20 24 28 32 36 40 +4 43 52 568 a0 04 08

Lambda-rho



TOC estimation for Duvernay using seismic data
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TOC estimation for Duvernay using seismic data

AlogR
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TOC estimation for Duvernay using seismic data

AlogR
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TOC estimation for Duvernay using seismic data

AlogR
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TOC estimation for Duvernay using seismic data
T -
* 87% correlation is noticed between S TTTTTRUTE
AlogR and Ap/(Ap+2up) BnMTHID-
ED .. \f\‘ ke y = -5.46502 x + 6.01424
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seismic data were computed first.
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* AlogR volume was derived using the
relationship.



Identification of sweet spots in Duvernay formation

Horizon slice from the AlogR volume 10ms interval below the Duvernay top
marker.
Notice the trend we see for high values of AlogR is not very different from
what we see on the constrained volume display shown alongside.



Identification of sweet spots in Duvernay formation

(a) e oo e AlogR (inverted)
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This was a blind well test. (a) The match is seen as good as the increasing and decreasing trends seem to follow each
other; (b) a crossplot between TOC and AlogR shows a correlation of 90%, which again lends confidence to the analysis.



Conclusions

1. An attempt has been made to characterize the Duvernay Formation using
seismic data.

2. Derived some seismic attributes (Ap-Mp and Ep-PR) using simultaneous
Inversion.

3. As the thickness of ZOI was far below the vertical resolution of the seismic
data, simultaneous inversion was not found to be suitable for identifcation
sweet spots in the Duvernay Formation.



Conclusions

4. We adopted a new workflow in which P-and S-reflectivities were processed

through thin-bed reflectivity inversion before post-stack Iimpedance
Inversion.

5. We were able to differentiate between Upper and Lower Duvernay using
above workflow.

6. Additionally, AlogR volume was computed. A reasonably good match

between AlogR and TOC measured at core sample, enhancing our confidence
In the analysis.
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